login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338372
T(n, m) = Sum_{k=1..(m+3)/2} C(m-k+2, k-1)*C(n+1, k-1)*C(n-m+k-1, k-1)*C(2*n-2*k+4, 2*m-4*k+5)/(C(2*k-2, k-1)*C(2*m-2*k+4, 2*k-2))/2, triangle read by rows.
1
1, 2, 2, 3, 10, 4, 4, 28, 32, 8, 5, 60, 136, 88, 16, 6, 110, 416, 504, 224, 32, 7, 182, 1036, 2024, 1616, 544, 64, 8, 280, 2240, 6448, 8064, 4736, 1280, 128, 9, 408, 4368, 17424, 31456, 28288, 13056, 2944, 256, 10, 570, 7872, 41616, 102592, 130880, 90880, 34432, 6656, 512, 11, 770, 13332, 90288, 291808, 501568, 487040, 273792, 87808, 14848, 1024
OFFSET
0,2
FORMULA
G.f.: -1/(x^2*y^2 - (1 - x*(y + 2*A001263(x, y) + 1))^2) = 1/(1 - 2*x^2*y + x^2 - 2*x*y - 2*x).
EXAMPLE
1,
2, 2,
3, 10, 4,
4, 28, 32, 8,
5, 60, 136, 88, 16
MAPLE
ogf := 1/(1 -2*x^2*y + x^2 - 2*x*y - 2*x): ser := series(ogf, x, 22):
xser := n -> expand(coeff(ser, x, n)):
seq(seq(coeff(xser(n), y, k), k=0..n), n=0..10); # Peter Luschny, Oct 23 2020
PROG
(Maxima)
T(n, m):=sum((binomial(m-k+2, k-1)*binomial(n+1, k-1)*binomial(n-m+k-1, k-1)*binomial(2*n-2*k+4, 2*m-4*k+5))/(binomial(2*k-2, k-1)*binomial(2*m-2*k+4, 2*k-2)), k, 1, (m+3)/2)/2;
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Vladimir Kruchinin, Oct 23 2020
STATUS
approved