login
A337023
Table read by antidiagonals: T(h,n) is the number of n-step self avoiding walks on a 3D cubic lattice confined inside a box of size 2h X 2h X 2h where the walk starts at the center of the box.
9
6, 24, 6, 72, 30, 6, 168, 144, 30, 6, 456, 624, 150, 30, 6, 1032, 2520, 720, 150, 30, 6, 2712, 9360, 3408, 726, 150, 30, 6, 5784, 34008, 15432, 3528, 726, 150, 30, 6, 14640, 120960, 68088, 16776, 3534, 726, 150, 30, 6, 29760, 430656, 289128, 79320, 16920, 3534, 726, 150, 30, 6
OFFSET
1,1
FORMULA
For n <= h, T(h,n) = A001412(n).
Row 1 = T(1,n) = A337021(n).
For n >= (2h+1)^3, T(h,n) = 0 as the walk contains more steps than there are available lattice points in the 2h X 2h X 2h box.
EXAMPLE
T(1,2) = 24 as after a step in one of the six axial directions the walk must turn along the face of the box; this eliminates the 2-step straight walk in all directions, so the total number of walks is 6*5-6 = 24.
.
The table begins:
.
6 24 72 168 456 1032 2712 5784 14640 29760 71136 133344 291696..
6 30 144 624 2520 9360 34008 120960 430656 1511856 5340312 18587208 65176416..
6 30 150 720 3408 15432 68088 289128 1205976 4920528 19985928 80066136 321160728..
6 30 150 726 3528 16776 79320 366960 1677864 7516992 33312456 145379760 630249720..
6 30 150 726 3534 16920 81216 385224 1822584 8518920 39588480 181800312 829567656..
6 30 150 726 3534 16926 81384 387768 1850376 8765304 41478144 194837136 912538512..
6 30 150 726 3534 16926 81390 387960 1853664 8805504 41872944 198158520 937459176..
6 30 150 726 3534 16926 81390 387966 1853880 8809632 41928816 198761160 942984312..
6 30 150 726 3534 16926 81390 387966 1853886 8809872 41933880 198836352 943868424..
6 30 150 726 3534 16926 81390 387966 1853886 8809878 41934144 198842448 943966968..
6 30 150 726 3534 16926 81390 387966 1853886 8809878 41934150 198842736 943974192..
6 30 150 726 3534 16926 81390 387966 1853886 8809878 41934150 198842742 943974504..
6 30 150 726 3534 16926 81390 387966 1853886 8809878 41934150 198842742 943974510..
CROSSREFS
Cf. A001412 (h->infinity), A337021 (h=1), A337031 (start at center of face), A337035 (start as corner of box), A336862 (start at middle of edge), A116904, A039648.
Sequence in context: A376477 A293256 A213344 * A193429 A213278 A029592
KEYWORD
nonn,walk,tabl
AUTHOR
Scott R. Shannon, Aug 11 2020
STATUS
approved