OFFSET
2,2
COMMENTS
For a general discussion, please see A213343.
This a(n) is for double-quantum transitions (q = 2).
It lists the flattened triangle T(2;N,k) with rows N = 2,3,... and columns N, k = 0..floor((N-2)/2).
REFERENCES
See A213343.
LINKS
Stanislav Sykora, Table of n, a(n) for n = 2..2501
Stanislav Sykora, T(2;N,k) with rows N=2,..,100 and columns k=0,..,floor((N-2)/2)
Stanislav Sýkora, Magnetic Resonance on OEIS, Stan's NMR Blog (Dec 31, 2014), Retrieved Nov 12, 2019.
FORMULA
Set q = 2 in: T(q;N,k) = 2^(N-q-2*k)*binomial(N,k)*binomial(N-k,q+k).
EXAMPLE
For N=4, there are 4 second-quantum transitions with combination index 1: (0001,1110),(0010,1101),(0100,1011),(1000,0111).
Starting rows of the triangle:
N | k = 0, 1, ..., floor((N-2)/2)
2 | 1
3 | 6
4 | 24 4
5 | 80 40
6 | 240 240 15
MATHEMATICA
With[{q = 2}, Table[2^(n - q - 2 k)*Binomial[n, k] Binomial[n - k, q + k], {n, 12}, {k, 0, Floor[(n - 2)/2]}]] // Flatten (* Michael De Vlieger, Nov 18 2019 *)
PROG
(PARI) See A213343; set thisq = 2.
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Stanislav Sykora, Jun 09 2012
STATUS
approved