login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213344
2-quantum transitions in systems of N>=2 spin 1/2 particles, in columns by combination indices.
3
1, 6, 24, 4, 80, 40, 240, 240, 15, 672, 1120, 210, 1792, 4480, 1680, 56, 4608, 16128, 10080, 1008, 11520, 53760, 50400, 10080, 210, 28160, 168960, 221760, 73920, 4620, 67584, 506880, 887040, 443520, 55440, 792
OFFSET
2,2
COMMENTS
For a general discussion, please see A213343.
This a(n) is for double-quantum transitions (q = 2).
It lists the flattened triangle T(2;N,k) with rows N = 2,3,... and columns N, k = 0..floor((N-2)/2).
REFERENCES
See A213343.
LINKS
Stanislav Sýkora, Magnetic Resonance on OEIS, Stan's NMR Blog (Dec 31, 2014), Retrieved Nov 12, 2019.
FORMULA
Set q = 2 in: T(q;N,k) = 2^(N-q-2*k)*binomial(N,k)*binomial(N-k,q+k).
EXAMPLE
For N=4, there are 4 second-quantum transitions with combination index 1: (0001,1110),(0010,1101),(0100,1011),(1000,0111).
Starting rows of the triangle:
N | k = 0, 1, ..., floor((N-2)/2)
2 | 1
3 | 6
4 | 24 4
5 | 80 40
6 | 240 240 15
MATHEMATICA
With[{q = 2}, Table[2^(n - q - 2 k)*Binomial[n, k] Binomial[n - k, q + k], {n, 12}, {k, 0, Floor[(n - 2)/2]}]] // Flatten (* Michael De Vlieger, Nov 18 2019 *)
PROG
(PARI) See A213343; set thisq = 2.
CROSSREFS
Cf. A051288 (q=0), A213343 (q=1), A213345 to A213352 (q=3..10).
Cf. A001788 (first column), A002694 (row sums).
Sequence in context: A376493 A376477 A293256 * A337023 A193429 A213278
KEYWORD
nonn,tabf
AUTHOR
Stanislav Sykora, Jun 09 2012
STATUS
approved