login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336925
Lexicographically earliest infinite sequence such that a(i) = a(j) => A336147(1+sigma(i)) = A336147(1+sigma(j)), for all i, j >= 1.
2
1, 1, 2, 1, 3, 4, 5, 1, 6, 7, 4, 8, 9, 2, 2, 1, 7, 10, 11, 12, 13, 14, 2, 15, 1, 12, 16, 17, 18, 19, 13, 1, 3, 20, 3, 21, 22, 15, 17, 23, 12, 24, 9, 25, 26, 19, 3, 2, 27, 28, 19, 13, 20, 29, 19, 29, 5, 23, 15, 4, 11, 24, 30, 1, 25, 31, 32, 33, 24, 31, 19, 6, 9, 34, 2, 35, 24, 4, 5, 36, 37, 33, 25, 9, 38, 39, 29, 40, 23, 41, 42, 4, 43, 31, 29, 44, 13, 45, 46, 47, 48, 49, 30
OFFSET
1,3
COMMENTS
Restricted growth sequence transform of the function f(n) = A336147(A088580(n)).
For all i, j:
A324400(i) = A324400(j) => a(i) = a(j),
a(i) = a(j) => A336691(i) = A336691(j),
a(i) = a(j) => A336924(i) = A336924(j).
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A020639(n) = if(1==n, n, factor(n)[1, 1]);
A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
A122111(n) = if(1==n, n, my(f=factor(n), es=Vecrev(f[, 2]), is=concat(apply(primepi, Vecrev(f[, 1])), [0]), pri=0, m=1); for(i=1, #es, pri += es[i]; m *= prime(pri)^(is[i]-is[1+i])); (m));
Aux336147(n) = [A020639(n), A278221(n)];
v336925 = rgs_transform(vector(up_to, n, Aux336147(1+sigma(n))));
A336925(n) = v336925[n];
CROSSREFS
Cf. also A336926.
Sequence in context: A364577 A286449 A318310 * A331744 A323892 A318311
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 10 2020
STATUS
approved