The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A336643 Squarefree kernel of n divided by the squarefree part of n: a(n) = rad(n) / core(n). 10
1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 1, 5, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 2, 7, 5, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 5, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 7, 3, 10, 1, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,4
COMMENTS
a(n) is the least number k such that k*n (and also n/k) is an exponentially odd number (A268335). - Amiram Eldar, Nov 18 2022
LINKS
FORMULA
a(n) = A007947(n) / A007913(n).
Multiplicative with a(p^k) = p^(1-(k mod 2)) = p^A059841(k).
a(n) = n/A350390(n). - Amiram Eldar, Jan 01 2022
a(n) = A356191(n)/n. - Amiram Eldar, Nov 18 2022
Dirichlet g.f.: zeta(2*s) * Product_{p prime} (1 + 1/p^s + 1/p^(2*s-1) - 1/p^(2*s)). - Amiram Eldar, Sep 09 2023
From Vaclav Kotesovec, Sep 09 2023: (Start)
Let f(s) = Product_{p prime} (1 - p^(1-5*s) + p^(2-5*s) + 2*p^(1-4*s) - p^(2-4*s) - p^(1-3*s) + p^(-3*s) - 2*p^(-2*s)).
Dirichlet g.f.: zeta(s) * zeta(2*s) * zeta(2*s-1) * f(s).
Sum_{k=1..n} a(k) ~ Pi^2 * f(1) * n / 12 * (log(n) + 3*gamma - 1 + 12*zeta'(2)/Pi^2 + f'(1)/f(1)), where
f(1) = Product_{p prime} (1 - 4/p^2 + 4/p^3 - 1/p^4) = A256392 = 0.217778716619536378323007514119446813130797755001355937648276403523626491...,
f'(1) = f(1) * Sum_{p prime} (11*p - 5) * log(p) / (p^3 + p^2 - 3*p + 1) = f(1) * 4.716596820856763078660955244870812634072512131626849517007098664560806248...
and gamma is the Euler-Mascheroni constant A001620. (End)
MATHEMATICA
f[p_, e_] := p^(1 - Mod[e, 2]); a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Dec 07 2020 *)
PROG
(PARI) A336643(n) = (factorback(factorint(n)[, 1]) / core(n));
(PARI) A336643(n) = if(1==n, n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^(1-(f[i, 2]%2))));
(PARI) for(n=1, 100, print1(direuler(p=2, n, 1/(1-X^2) * (1 + X + p*X^2 - X^2))[n], ", ")) \\ Vaclav Kotesovec, Sep 09 2023
(Python)
from math import prod
from sympy.ntheory.factor_ import primefactors, core
def A336643(n): return prod(primefactors(n))//core(n) # Chai Wah Wu, Dec 30 2021
CROSSREFS
Sequence in context: A162154 A134505 A329376 * A334039 A076933 A071974
KEYWORD
nonn,easy,mult
AUTHOR
Antti Karttunen, Jul 28 2020
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 25 15:42 EDT 2024. Contains 372800 sequences. (Running on oeis4.)