The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A336643 Squarefree kernel of n divided by the squarefree part of n: a(n) = rad(n) / core(n). 10
 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 1, 5, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 2, 7, 5, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 5, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 7, 3, 10, 1, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS a(n) is the least number k such that k*n (and also n/k) is an exponentially odd number (A268335). - Amiram Eldar, Nov 18 2022 LINKS Antti Karttunen, Table of n, a(n) for n = 1..65537 Vaclav Kotesovec, Graph - the asymptotic ratio (1000000 terms). FORMULA a(n) = A007947(n) / A007913(n). Multiplicative with a(p^k) = p^(1-(k mod 2)) = p^A059841(k). a(n) = n/A350390(n). - Amiram Eldar, Jan 01 2022 a(n) = A356191(n)/n. - Amiram Eldar, Nov 18 2022 Dirichlet g.f.: zeta(2*s) * Product_{p prime} (1 + 1/p^s + 1/p^(2*s-1) - 1/p^(2*s)). - Amiram Eldar, Sep 09 2023 From Vaclav Kotesovec, Sep 09 2023: (Start) Let f(s) = Product_{p prime} (1 - p^(1-5*s) + p^(2-5*s) + 2*p^(1-4*s) - p^(2-4*s) - p^(1-3*s) + p^(-3*s) - 2*p^(-2*s)). Dirichlet g.f.: zeta(s) * zeta(2*s) * zeta(2*s-1) * f(s). Sum_{k=1..n} a(k) ~ Pi^2 * f(1) * n / 12 * (log(n) + 3*gamma - 1 + 12*zeta'(2)/Pi^2 + f'(1)/f(1)), where f(1) = Product_{p prime} (1 - 4/p^2 + 4/p^3 - 1/p^4) = A256392 = 0.217778716619536378323007514119446813130797755001355937648276403523626491..., f'(1) = f(1) * Sum_{p prime} (11*p - 5) * log(p) / (p^3 + p^2 - 3*p + 1) = f(1) * 4.716596820856763078660955244870812634072512131626849517007098664560806248... and gamma is the Euler-Mascheroni constant A001620. (End) MATHEMATICA f[p_, e_] := p^(1 - Mod[e, 2]); a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Dec 07 2020 *) PROG (PARI) A336643(n) = (factorback(factorint(n)[, 1]) / core(n)); (PARI) A336643(n) = if(1==n, n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^(1-(f[i, 2]%2)))); (PARI) for(n=1, 100, print1(direuler(p=2, n, 1/(1-X^2) * (1 + X + p*X^2 - X^2))[n], ", ")) \\ Vaclav Kotesovec, Sep 09 2023 (Python) from math import prod from sympy.ntheory.factor_ import primefactors, core def A336643(n): return prod(primefactors(n))//core(n) # Chai Wah Wu, Dec 30 2021 CROSSREFS Cf. A007913, A007947, A059841, A268335, A336644, A350390, A356191. Sequence in context: A162154 A134505 A329376 * A334039 A076933 A071974 Adjacent sequences: A336640 A336641 A336642 * A336644 A336645 A336646 KEYWORD nonn,easy,mult AUTHOR Antti Karttunen, Jul 28 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 25 15:42 EDT 2024. Contains 372800 sequences. (Running on oeis4.)