login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336589
Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(x) * BesselI(0,2*sqrt(1 - exp(x))).
1
1, 0, -3, -19, -75, 574, 25795, 579963, 9342529, 21955076, -7954085799, -535479422655, -25206613635203, -871888114433454, -7465407495946777, 2538884115164554199, 344689220434285963905, 31689538033223254172648, 2273498459548301881979029
OFFSET
0,3
FORMULA
a(n) = n! * Sum_{k=0..n} (-1)^k * Stirling2(n+1,k+1) / k!.
MATHEMATICA
nmax = 18; CoefficientList[Series[Exp[x] BesselI[0, 2 Sqrt[1 - Exp[x]]], {x, 0, nmax}], x] Range[0, nmax]!^2
Table[n! Sum[(-1)^k StirlingS2[n + 1, k + 1]/k!, {k, 0, n}], {n, 0, 18}]
PROG
(PARI) a(n) = n! * sum(k=0, n, (-1)^k*stirling(n+1, k+1, 2) / k!); \\ Michel Marcus, Jul 29 2020
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Jul 26 2020
STATUS
approved