login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243142
Number of inequivalent (mod D_3) ways to place 3 points on a triangular grid of side n so that they are not vertices of an equilateral triangle of any orientation.
4
0, 3, 19, 75, 218, 542, 1178, 2350, 4340, 7585, 12605, 20153, 31094, 46620, 68068, 97212, 136008, 186975, 252855, 337095, 443410, 576378, 740894, 942890, 1188668, 1485757, 1842113, 2267125, 2770670, 3364280, 4060040, 4871928, 5814544, 6904635, 8159643, 9599427
OFFSET
2,2
LINKS
FORMULA
a(n) = (n^6 + 3*n^5 - 5*n^4 + 6*n^3 - 68*n^2 + 72*n + IF(MOD(n, 2) = 1)*(27*n^2 - 81*n + 45))/288.
G.f.: x^3*(2*x^5-5*x^4+x^3-8*x^2-7*x-3) / ((x-1)^7*(x+1)^3). - Colin Barker, May 30 2014
MATHEMATICA
Drop[CoefficientList[Series[x^3*(2*x^5-5*x^4+x^3-8*x^2-7*x-3) / ((x-1)^7*(x+1)^3), {x, 0, 40}], x], 2] (* Vaclav Kotesovec, May 31 2014 after Colin Barker *)
PROG
(PARI) concat(0, Vec(x^3*(2*x^5-5*x^4+x^3-8*x^2-7*x-3)/((x-1)^7*(x+1)^3) + O(x^100))) \\ Colin Barker, May 30 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Heinrich Ludwig, May 30 2014
STATUS
approved