login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of inequivalent (mod D_3) ways to place 3 points on a triangular grid of side n so that they are not vertices of an equilateral triangle of any orientation.
4

%I #16 Feb 09 2024 11:16:18

%S 0,3,19,75,218,542,1178,2350,4340,7585,12605,20153,31094,46620,68068,

%T 97212,136008,186975,252855,337095,443410,576378,740894,942890,

%U 1188668,1485757,1842113,2267125,2770670,3364280,4060040,4871928,5814544,6904635,8159643,9599427

%N Number of inequivalent (mod D_3) ways to place 3 points on a triangular grid of side n so that they are not vertices of an equilateral triangle of any orientation.

%H Heinrich Ludwig, <a href="/A243142/b243142.txt">Table of n, a(n) for n = 2..1000</a>

%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (4,-3,-8,14,0,-14,8,3,-4,1).

%F a(n) = (n^6 + 3*n^5 - 5*n^4 + 6*n^3 - 68*n^2 + 72*n + IF(MOD(n, 2) = 1)*(27*n^2 - 81*n + 45))/288.

%F G.f.: x^3*(2*x^5-5*x^4+x^3-8*x^2-7*x-3) / ((x-1)^7*(x+1)^3). - _Colin Barker_, May 30 2014

%t Drop[CoefficientList[Series[x^3*(2*x^5-5*x^4+x^3-8*x^2-7*x-3) / ((x-1)^7*(x+1)^3), {x, 0, 40}], x],2] (* _Vaclav Kotesovec_, May 31 2014 after _Colin Barker_ *)

%o (PARI) concat(0, Vec(x^3*(2*x^5-5*x^4+x^3-8*x^2-7*x-3)/((x-1)^7*(x+1)^3) + O(x^100))) \\ _Colin Barker_, May 30 2014

%Y Cf. A243141, A240440, A001399, A227327, A243143, A243144.

%K nonn,easy

%O 2,2

%A _Heinrich Ludwig_, May 30 2014