login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A335982
Expansion of e.g.f. exp(4 * (1 - exp(-x)) + x).
3
1, 5, 21, 69, 149, 69, -619, -187, 9365, -3515, -193643, 453957, 4704917, -29425595, -83918443, 1640246085, -3184430955, -74516517307, 604223657877, 1324972362053, -52526078298475, 264984579390533, 2477371363954069, -44206576595187899, 133280843118435477
OFFSET
0,2
FORMULA
a(n) = exp(4) * (-1)^n * Sum_{k>=0} (-4)^k * (k - 1)^n / k!.
a(0) = 1; a(n) = a(n-1) + 4 * Sum_{k=0..n-1} (-1)^(n-k-1) * binomial(n-1,k) * a(k).
MATHEMATICA
nmax = 24; CoefficientList[Series[Exp[4 (1 - Exp[-x]) + x], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = a[n - 1] + 4 Sum[(-1)^(n - k - 1) Binomial[n - 1, k] a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 24}]
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Jul 03 2020
STATUS
approved