The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A335106 Irregular triangle T(n,k) is the number of times that prime(k) is the greatest part in a partition of n into prime parts; Triangle T(n,k), n>=0, 1 <= k <= max(1,A000720(A335285(n))), read by rows. 4
 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 2, 1, 1, 1, 1, 2, 1, 0, 2, 2, 1, 1, 1, 2, 2, 2, 0, 2, 3, 2, 1, 1, 1, 2, 3, 3, 1, 0, 3, 4, 3, 1, 1, 1, 2, 4, 4, 2, 1, 0, 3, 5, 5, 2, 1, 1, 1, 3, 5, 5, 3, 2, 0, 3, 6, 7, 3, 2, 1, 1, 1, 3, 7, 7, 4, 3, 1, 0, 4 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,20 COMMENTS Let L(n) be the set of least part primes of all prime partitions of n, and let G(n) be corresponding set of greatest prime parts. All prime partitions, commencing with p in L(n) and terminating with q in G(n) can be shown as unique pathways on a partition tree of n; see link for details. |G(n)| = A000607(n). LINKS David James Sycamore, Prime Partition Trees EXAMPLE A000607(10) = 5 and the prime partitions of 10 are: (2,2,2,2,2), (2,2,3,3), (2,3,5), (5,5) and (3,7). Thus G(10) = {2,3,5,5,7}, and consequently row 10 is [1,1,2,1]. In the table below, for n >= 2,  0 is used to indicate when prime(k) is not in G(n) and is less than the greatest member of G(n), otherwise the entry for prime(k) not in G(n) is left empty. For n >= 2 the sum of entries in the n-th row is |G(n)| = A000607(n). Triangle T(n,k) begins: 0; 0; 1; 0, 1; 1; 0, 1, 1; 1, 1; 0, 1, 1, 1; 1, 1, 1; 0, 2, 1, 1; 1, 1, 2, 1; 0, 2, 2, 1, 1; 1, 2, 2, 2; 0, 2, 3, 2, 1, 1; 1, 2, 3, 3, 1; 0, 3, 4, 3, 1, 1; 1, 2, 4, 4, 2, 1; 0, 3, 5, 5, 2, 1, 1; ... MATHEMATICA Flatten@ Block[{nn = 22, t}, t = Block[{s = {Prime@ PrimePi@ nn}}, KeySort@ Merge[#, Identity] &@ Join[{0 -> {}, 1 -> {}}, Reap[Do[If[# <= nn, Sow[# -> s]; AppendTo[s, Last@ s], If[Last@ s == 2, s = DeleteCases[s, 2]; If[Length@ s == 0, Break[], s = MapAt[Prime[PrimePi[#] - 1] &, s, -1]], s = MapAt[Prime[PrimePi[#] - 1] &, s, -1] ] ] &@Total[s], {i, Infinity}]][[-1, -1]] ] ]; Array[Function[p, If[! IntegerQ@ First@ p, {0}, Array[Count[p, Prime@ #] &, PrimePi@ Max@ p]]]@ Map[Max, t[[#]]] &, Max@ Keys@ t]] (* Michael De Vlieger, May 23 2020 *) row[0]={0}; row[k_] := Join[If[OddQ@k, {0}, {}], Last /@ Tally@ Sort[ First /@ IntegerPartitions[k, All, Prime@ Range@ PrimePi@ k]]]; Join @@ Array[row, 20, 0] (* Giovanni Resta, May 31 2020 *) CROSSREFS Cf. A000040, A000607, A000720, A333365, A331634, A335285. Row sums gives A000607 for n > 1. Length of n-th row is A000720(A335285(n)) for n >1. Number of partition of n in the first k primes: A059841 (k = 1), A103221 (k = 2), A025795 (k = 3), A029144 (k = 4), A140952 (k = 5), A140953 (k = 6). Sequence in context: A016024 A238988 A261013 * A093518 A128184 A025450 Adjacent sequences:  A335103 A335104 A335105 * A335107 A335108 A335109 KEYWORD nonn,easy,tabf AUTHOR David James Sycamore, Michael De Vlieger, May 23 2020 EXTENSIONS More terms from Giovanni Resta, May 31 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 5 22:41 EDT 2021. Contains 346488 sequences. (Running on oeis4.)