login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A261013 Irregular triangle read by rows: T(n,k) = number of partitions of n into prime parts in which the largest part is the k-th prime. 2
0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 2, 1, 1, 1, 1, 2, 1, 0, 2, 2, 1, 1, 1, 2, 2, 2, 0, 0, 2, 3, 2, 1, 1, 1, 2, 3, 3, 1, 0, 0, 3, 4, 3, 1, 1, 1, 2, 4, 4, 2, 1, 0, 3, 5, 5, 2, 1, 1, 1, 3, 5, 5, 3, 2, 0, 0, 3, 6, 7, 3, 2, 1, 1, 1, 3, 7, 7, 4, 3, 1, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,22

LINKS

Alois P. Heinz, Rows n = 1..500, flattened

O. P. Gupta and S. Luthra, Partitions into primes, Proc. Nat. Inst. Sci. India. Part A. 21 (1955), 181-184.

EXAMPLE

Triangle begins:

0,

1,

0,1,

1,0,

0,1,1,

1,1,0,

0,1,1,1,

1,1,1,0,

0,2,1,1,

1,1,2,1,

...

MAPLE

with(numtheory):

b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,

      b(n, i-1)+(p-> `if`(p>n, 0, b(n-p, i)))(ithprime(i))))

    end:

T:= n-> `if`(n=1, 0, seq(b(n-ithprime(k), k), k=1..pi(n))):

seq(T(n), n=1..25);  # Alois P. Heinz, Aug 16 2015

MATHEMATICA

b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i-1] + Function[p, If[p>n, 0, b[n-p, i]]][Prime[i]]]]; T[n_] := If[n == 1, 0, Table[b[n - Prime[k], k], {k, 1, PrimePi[n]}]]; Table[T[n], {n, 1, 25}] // Flatten (* Jean-Fran├žois Alcover, Dec 06 2016 after Alois P. Heinz *)

CROSSREFS

Row sums are A000607.

Sequence in context: A176820 A016024 A238988 * A093518 A128184 A025450

Adjacent sequences:  A261010 A261011 A261012 * A261014 A261015 A261016

KEYWORD

nonn,tabf,look

AUTHOR

N. J. A. Sloane, Aug 16 2015

EXTENSIONS

More terms from Alois P. Heinz, Aug 16 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 17 05:59 EST 2018. Contains 317275 sequences. (Running on oeis4.)