login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261016
a(n) = Sum_{k=0..2^n-1} k*A261015(n,k).
5
1, 6, 18, 46, 107, 241, 535, 1178, 2569, 5546, 11859, 25156, 53058, 111379, 232966, 486023, 1012185, 2104729, 4370644, 9064924, 18778766, 38856079, 80307630, 165790125, 341872016, 704171185, 1448812630, 2977673003, 6113469501, 12538958895, 25693167881, 52598980642
OFFSET
1,2
COMMENTS
The scaled values a(n)/2^n are (to nine decimal places) 0.5000000000, 1.500000000, 2.250000000, 2.875000000, 3.343750000, 3.765625000, 4.179687500, 4.601562500, 5.017578125, 5.416015625, 5.790527344, 6.141601562, 6.476806641, 6.798034668, 7.109558105, 7.416122437, 7.722358704, 8.028903961, 8.336341858, 8.644985199, 8.954413414, 9.264011145, 9.573415518, 9.881861508, 10.18858004, 10.49296834, 10.79449527, 11.09269635, 11.38722431, 11.67781548, 11.96431363, 12.24665452, ...
LINKS
Alois P. Heinz and Hiroaki Yamanouchi, Table of n, a(n) for n = 1..58 (a(1)-a(36) from Alois P. Heinz)
MATHEMATICA
(* This program is not suitable to compute more than a dozen terms. *)
notVis[bits_] := For[i = 0, True, i++, If[SequencePosition[bits, IntegerDigits[i, 2]] == {}, Return[i]]];
T[n_, k_] := Select[Rest[IntegerDigits[#, 2]] & /@ Range[2^n, 2^(n+1) - 1], notVis[#] == k &] // Length;
a[n_] := Sum[k*T[n, k], {k, 0, 2^n - 1}];
Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 12}] (* Jean-François Alcover, Aug 02 2018 *)
PROG
(Haskell)
a261016 = sum . zipWith (*) [0..] . a261019_row'
-- Reinhard Zumkeller, Aug 18 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Aug 16 2015
EXTENSIONS
a(5)-a(16) from Alois P. Heinz, Aug 17 2015
a(17)-a(25) from Reinhard Zumkeller, Aug 18 2015
a(26)-a(32) from Alois P. Heinz, Aug 19 2015
STATUS
approved