

A140953


Expansion of 1/((1x^2)*(1x^3)*(1x^5)*(1x^7)*(1x^11)*(1x^13)).


3



1, 0, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 9, 10, 12, 14, 16, 19, 21, 25, 28, 32, 36, 41, 46, 52, 58, 65, 72, 80, 89, 98, 109, 119, 132, 144, 158, 173, 189, 206, 224, 244, 264, 287, 310, 336, 362, 391, 421, 453, 487, 523, 561, 601, 644, 688, 736, 785, 838, 893
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,6


COMMENTS

Number of partitions of n into the first 6 primes. [Corrected by Harvey P. Dale, Dec 05 2022]


LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (0,1,1,0, 0,0,0,1,1,0,1,0,0,0,0,1,1,0,1,1,1,1,0,1,1,0,0,0,0,1,0,1,1,0,0,0,0,1,1,0,1).


MAPLE

M := Matrix(41, (i, j)> if (i=j1) or (j=1 and member(i, [2, 3, 11, 19, 20, 21, 22, 30, 38, 39])) then 1 elif j=1 and member(i, [8, 9, 16, 17, 24, 25, 32, 33, 41]) then 1 else 0 fi); a := n > (M^(n))[1, 1]; seq (a(n), n=0..50);


MATHEMATICA

CoefficientList[Series[1/Times@@Table[1x^p, {p, Prime[Range[6]]}], {x, 0, 60}], x] (* or *) LinearRecurrence[{0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1}, {1, 0, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 9, 10, 12, 14, 16, 19, 21, 25, 28, 32, 36, 41, 46, 52, 58, 65, 72, 80, 89, 98, 109, 119, 132, 144, 158, 173, 189, 206}, 70] (* Harvey P. Dale, Dec 05 2022 *)


CROSSREFS

Cf. A000040, A025795, A029144, A103221, A140952, A335106.
Sequence in context: A347610 A027583 A029022 * A112021 A000607 A114372
Adjacent sequences: A140950 A140951 A140952 * A140954 A140955 A140956


KEYWORD

nonn,easy,changed


AUTHOR

Alois P. Heinz, Jul 25 2008


STATUS

approved



