login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A334640
a(n) is the total number of down steps between the 2nd and 3rd up steps in all 2-Dyck paths of length 3*n. A 2-Dyck path is a nonnegative lattice path with steps (1, 2), (1, -1) that starts and ends at y = 0.
4
0, 0, 9, 19, 72, 324, 1595, 8307, 44982, 250648, 1427679, 8274825, 48644310, 289334160, 1738043892, 10529070020, 64252519830, 394601627376, 2437058926871, 15126463230165, 94306717535940, 590318477063700, 3708527622652755, 23374587898663155, 147770791807427880
OFFSET
0,3
COMMENTS
For n = 2, there is no 3rd up step, a(2) = 9 enumerates the total number of down steps between the 2nd up step and the end of the path.
LINKS
A. Asinowski, B. Hackl, and S. Selkirk, Down step statistics in generalized Dyck paths, arXiv:2007.15562 [math.CO], 2020.
FORMULA
a(0) = a(1) = 0 and a(n) = 2*Sum_{j=1..2} binomial(3*j+1,j) * binomial(3*(n-j),n-j) / ((3*j+1)*(n-j+1)) for n > 1.
EXAMPLE
For n = 2, there are the 2-Dyck paths UUDDDD, UDUDDD, UDDUDD. Between the 2nd up step and the end of the path there are a(2) = 4 + 3 + 2 = 9 down steps in total.
MAPLE
b:= proc(x, y, u, c) option remember; `if`(x=0, c,
`if`(y+2<x, b(x-1, y+2, min(u+1, 3), c), 0)+
`if`(y>0, b(x-1, y-1, u, c+`if`(u=2, 1, 0)), 0))
end:
a:= n-> b(3*n, 0$3):
seq(a(n), n=0..24); # Alois P. Heinz, May 09 2020
# second Maple program:
a:= proc(n) option remember; `if`(n<3, [0$2, 9][n+1],
(3*(n-1)*(3*n-8)*(3*n-7)*(13*n-20)*a(n-1))/
(2*(13*n-33)*(n-2)*(2*n-3)*n))
end:
seq(a(n), n=0..24); # Alois P. Heinz, May 09 2020
MATHEMATICA
a[0] = a[1] = 0; a[n_] := 2 * Sum[Binomial[3*j + 1, j] * Binomial[3*(n - j), n - j]/((3*j + 1)*(n - j + 1)), {j, 1, 2}]; Array[a, 25, 0] (* Amiram Eldar, May 09 2020 *)
PROG
(PARI) a(n) = if (n<=1, 0, 2*sum(j=1, 2, binomial(3*j+1, j) * binomial(3*(n-j), n-j)/((3*j+1)*(n-j+1)))); \\ Michel Marcus, May 09 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Benjamin Hackl, May 07 2020
STATUS
approved