login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A334637
Sum of different values of x_1*x_2*...*x_n where x_1=1 and x_i-x_{i-1} is 0 or 1.
0
1, 3, 13, 75, 517, 4443, 43093, 486315, 6082117, 81407163, 1184034613, 19251200715, 342825926437, 6604284459483, 136398242877973, 2984396941441515, 68215762130020357, 1627134074774283003, 40749275946991321333, 1079215210446044648715, 30311064871950344936677, 897713839789350372765723
OFFSET
1,2
COMMENTS
Equals to: sum of different possible product of nesting levels in n pairs of parentheses.
For example, there are A000108(3)=5 ways to insert 3 pair of parentheses: ()()(), (())(), ()(()), (()()), ((())), the product of nesting levels are 1, 2, 2, 4, 6, and A001147(3)=1+2+2+4+6=15, but a(3)=1+2+4+6=13.
LINKS
Using your Head is Permitted, Parenthesis Values, November 2013 riddle.
EXAMPLE
n=5: possible values are 1*1*1*1*1, 1*1*1*1*2, 1*1*1*2*2, 1*1*1*2*3, 1*1*2*2*2, 1*1*2*2*3, 1*1*2*3*3, 1*1*2*3*4, 1*2*2*2*2, 1*2*2*2*3, 1*2*2*3*3, 1*2*2*3*4, 1*2*3*3*3, 1*2*3*3*4, 1*2*3*4*4, 1*2*3*4*5, but since 1*1*2*3*4=1*2*2*2*3, the sum of other values is A000670(5)-1*1*2*3*4=517.
PROG
(Python)
k=[{(1, 1)}]
for i in range(20):
k.append(set([(i[0]*i[1], i[1]) for i in k[-1]])|set([(i[0]*(i[1]+1), i[1]+1) for i in k[-1]]))
[sum(set(j[0] for j in i)) for i in k]
CROSSREFS
Cf. A334635 (number of different values), A000670 (sum if the values are not deduplicated), A001147 (sum of products of nesting levels in n pairs of parentheses if not deduplicated).
Sequence in context: A074517 A251658 A330047 * A007178 A173990 A276924
KEYWORD
nonn
AUTHOR
Jack Zhang, Sep 10 2020
STATUS
approved