login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A334603
Period of the fraction 1/11^n for n >= 1.
0
2, 22, 242, 2662, 29282, 322102, 3543122, 38974342, 428717762, 4715895382, 51874849202, 570623341222, 6276856753442, 69045424287862, 759499667166482, 8354496338831302, 91899459727144322, 1010894056998587542, 11119834626984462962, 122318180896829092582
OFFSET
1,1
COMMENTS
Conjecture proposed by the authors in References page 205: if p is a prime with gcd(p,30) = 1 and if the period of 1/p is m then the period of 1/p^n is m*p^(n-1).
REFERENCES
J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 346 pp. 50, 204-205, Ellipses, Paris 2004.
FORMULA
a(n) = 2 * 11^(n-1) [conjectured, see comments].
a(n) = A051626(A001020(n)).
EXAMPLE
1/121 = 0. 0082644628099173553719 0082644628099173553719 ... with periodic part {0082644628099173553719}, whose length is 22 digits, so a(2) = 22.
MATHEMATICA
MultiplicativeOrder[10, 11^#] & /@ Range[20] (* Giovanni Resta, May 07 2020 *)
PROG
(PARI) a(n) = znorder(Mod(10, 11^n)); \\ Michel Marcus, May 09 2020
CROSSREFS
Cf. period of fractions: A051626 (1/n), A133494 (1/3^n), A055272 (1/7^n).
Cf. A001020 (11^n).
Sequence in context: A138140 A322283 A151617 * A342232 A082777 A229465
KEYWORD
nonn,base
AUTHOR
Bernard Schott, May 07 2020
EXTENSIONS
More terms from Giovanni Resta, May 07 2020
STATUS
approved