login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229465
Number of lattice paths from {2}^n to {0}^n using steps that decrement one component or all components by the same positive integer.
2
1, 2, 22, 248, 6506, 292442, 19450082, 1781791202, 214899390722, 33007840951682, 6290830043769602, 1456812593474515202, 402910665233497344002, 131173228963457333452802, 49656810289226589524275202, 21628258853895326260083456002, 10739534026001485870629015552002
OFFSET
0,2
LINKS
FORMULA
a(n) ~ sqrt(Pi) * 2^(n+1) * n^(2*n+1/2) / exp(2*n-1). - Vaclav Kotesovec, Jul 16 2014
MAPLE
a:= proc(n) option remember; `if`(n<5, [1, 2, 22, 248, 6506][n+1],
((64481193996*n^5 -656050382562*n^4 +1835465682464*n^3
-3691825299357*n^2 +10428520019257*n -9978603085078)*a(n-1)
-(64481193996*n^6 -251022627918*n^5 -4253631972584*n^4
+29686486719123*n^3 -71916661134305*n^2 +77149141951487*n
-30090569866279)*a(n-2) +(n-2)*(437268351642*n^5
-5777340617365*n^4 +26203609431616*n^3 -50411340883791*n^2
+38226810988733*n -9795152028455)*a(n-3) -(n-2)*(n-3)*
(170273280324*n^4 -2136687453608*n^3 +8692120865702*n^2
-11643795721897*n +4287224601259)*a(n-4) -(n-6)*(n-2)*(n-3)*
(n-4)*(202513877322*n^2-310611483677*n+98391999767)*a(n-5))/
(32240596998*n^3-328025191281*n^2+768115007074*n-189524735891))
end:
seq(a(n), n=0..20);
MATHEMATICA
b[l_] := b[l] = With[{m = Length[l]}, If[m == 0 || l[[m]] == 0, 1, If[m > 1, Sum[b[l - Array[j&, m]], {j, 1, l[[1]]}], 0] + Sum[Sum[b[Sort[ ReplacePart[l, i -> l[[i]] - j]]], {j, 1, l[[i]]}], {i, 1, m}]]];
a[k_] := b[Array[2&, k]];
a /@ Range[0, 20] (* Jean-François Alcover, Dec 22 2020, after Alois P. Heinz in A229345 *)
CROSSREFS
Row n=2 of A229345.
Sequence in context: A334603 A342232 A082777 * A072076 A226706 A036841
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 24 2013
STATUS
approved