login
A229465
Number of lattice paths from {2}^n to {0}^n using steps that decrement one component or all components by the same positive integer.
2
1, 2, 22, 248, 6506, 292442, 19450082, 1781791202, 214899390722, 33007840951682, 6290830043769602, 1456812593474515202, 402910665233497344002, 131173228963457333452802, 49656810289226589524275202, 21628258853895326260083456002, 10739534026001485870629015552002
OFFSET
0,2
LINKS
FORMULA
a(n) ~ sqrt(Pi) * 2^(n+1) * n^(2*n+1/2) / exp(2*n-1). - Vaclav Kotesovec, Jul 16 2014
MAPLE
a:= proc(n) option remember; `if`(n<5, [1, 2, 22, 248, 6506][n+1],
((64481193996*n^5 -656050382562*n^4 +1835465682464*n^3
-3691825299357*n^2 +10428520019257*n -9978603085078)*a(n-1)
-(64481193996*n^6 -251022627918*n^5 -4253631972584*n^4
+29686486719123*n^3 -71916661134305*n^2 +77149141951487*n
-30090569866279)*a(n-2) +(n-2)*(437268351642*n^5
-5777340617365*n^4 +26203609431616*n^3 -50411340883791*n^2
+38226810988733*n -9795152028455)*a(n-3) -(n-2)*(n-3)*
(170273280324*n^4 -2136687453608*n^3 +8692120865702*n^2
-11643795721897*n +4287224601259)*a(n-4) -(n-6)*(n-2)*(n-3)*
(n-4)*(202513877322*n^2-310611483677*n+98391999767)*a(n-5))/
(32240596998*n^3-328025191281*n^2+768115007074*n-189524735891))
end:
seq(a(n), n=0..20);
MATHEMATICA
b[l_] := b[l] = With[{m = Length[l]}, If[m == 0 || l[[m]] == 0, 1, If[m > 1, Sum[b[l - Array[j&, m]], {j, 1, l[[1]]}], 0] + Sum[Sum[b[Sort[ ReplacePart[l, i -> l[[i]] - j]]], {j, 1, l[[i]]}], {i, 1, m}]]];
a[k_] := b[Array[2&, k]];
a /@ Range[0, 20] (* Jean-François Alcover, Dec 22 2020, after Alois P. Heinz in A229345 *)
CROSSREFS
Row n=2 of A229345.
Sequence in context: A334603 A342232 A082777 * A072076 A226706 A036841
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 24 2013
STATUS
approved