OFFSET
0,2
FORMULA
Sum_{k=0..n} a(n-k)*a(k) = Sum_{k=0..n} C(3*n+2*k,n-k)*C(3*n-2*k,k).
Self-convolution equals A226705.
EXAMPLE
G.f.: A(x) = 1 + 2*x + 22*x^2 + 256*x^3 + 3174*x^4 + 40862*x^5 +...
A related series is G(x) = 1 + x*G(x), which begins
G(x) = 1 + x + 6*x^2 + 51*x^3 + 506*x^4 + 5481*x^5 + 62832*x^6 +...
where A(x) = 1/sqrt(1 + 12*x*G(x)^4 - 16*x*G(x)^5).
PROG
(PARI) {a(n)=local(G=1+x); for(i=0, n, G=1+x*G^6+x*O(x^n)); polcoeff(1/sqrt(1+12*x*G^4-16*x*G^5), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 15 2013
STATUS
approved