The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A334268 Number of compositions of n where every distinct subsequence (not necessarily contiguous) has a different sum. 2
 1, 1, 2, 4, 5, 10, 10, 24, 24, 43, 42, 88, 72, 136, 122, 242, 213, 392, 320, 630, 490, 916, 742, 1432, 1160, 1955, 1604, 2826, 2310, 3850, 2888, 5416, 4426, 7332, 5814, 10046, 7983, 12946, 10236, 17780, 14100, 22674, 17582, 30232, 23674, 37522, 29426, 49832 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS A composition of n is a finite sequence of positive integers summing to n. The contiguous case is A325676. LINKS EXAMPLE The a(1) = 1 through a(6) = 19 compositions:   (1)  (2)    (3)      (4)        (5)          (6)        (1,1)  (1,2)    (1,3)      (1,4)        (1,5)               (2,1)    (2,2)      (2,3)        (2,4)               (1,1,1)  (3,1)      (3,2)        (3,3)                        (1,1,1,1)  (4,1)        (4,2)                                   (1,1,3)      (5,1)                                   (1,2,2)      (1,1,4)                                   (2,2,1)      (2,2,2)                                   (3,1,1)      (4,1,1)                                   (1,1,1,1,1)  (1,1,1,1,1,1) MAPLE b:= proc(n, s) option remember; `if`(n=0, 1, add((h->       `if`(nops(h)=nops(map(l-> add(i, i=l), h)),        b(n-j, h), 0))({s[], map(l-> [l[], j], s)[]}), j=1..n))     end: a:= n-> b(n, {[]}): seq(a(n), n=0..23);  # Alois P. Heinz, Jun 03 2020 MATHEMATICA Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], UnsameQ@@Total/@Union[Subsets[#]]&]], {n, 0, 15}] CROSSREFS These compositions are ranked by A334967. Compositions where every restriction to a subinterval has a different sum are counted by A169942 and A325677 and ranked by A333222. The case of partitions is counted by A325768 and ranked by A325779. Positive subset-sums of partitions are counted by A276024 and A299701. Knapsack partitions are counted by A108917 and A325592 and ranked by A299702, while the strict case is counted by A275972 and ranked by A059519 and A301899. Knapsack compositions are counted by A325676 and A325687 and ranked by A333223. The case of partitions is counted by A325769 and ranked by A325778, for which the number of distinct consecutive subsequences is given by A325770. Cf. A003022, A029931, A103295, A143823, A325680, A333224. Sequence in context: A189767 A173817 A198383 * A220696 A275482 A156799 Adjacent sequences:  A334265 A334266 A334267 * A334269 A334270 A334271 KEYWORD nonn AUTHOR Gus Wiseman, Jun 02 2020 EXTENSIONS a(18)-a(47) from Alois P. Heinz, Jun 03 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 18 23:18 EDT 2021. Contains 348070 sequences. (Running on oeis4.)