login
A198383
a(n) = Sum_{k=1..n} 2^(n mod k).
1
1, 2, 4, 5, 10, 10, 20, 22, 37, 40, 80, 72, 144, 158, 278, 283, 566, 548, 1096, 1120, 2106, 2162, 4324, 4210, 8389, 8584, 16650, 16772, 33544, 33194, 66388, 66968, 131882, 132690, 265222, 263607, 527214, 530138, 1052078, 1054254, 2108508, 2103282, 4206564, 4216760
OFFSET
1,2
COMMENTS
A more precise asymptotic formula is given in the link.
From David Morales Marciel, Oct 19 2015: (Start)
If n is prime then a(n)=2*a(n-1).
It appears that for every (deficient, abundant)-pair of numbers (11+6x, 11+6x+1), a(11+6x) > a(11+6x+1).
(End)
FORMULA
a(n) = 2^ceiling(n/2) + O(2^(n/3)).
MATHEMATICA
Table[Sum[2^Mod[n, k], {k, n}], {n, 44}] (* Michael De Vlieger, Oct 19 2015 *)
PROG
(PARI) a(n) = sum(k=1, n, 2^(n%k))
CROSSREFS
Cf. A198259.
Sequence in context: A307805 A189767 A173817 * A334268 A220696 A275482
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Oct 24 2011
STATUS
approved