login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A198383
a(n) = Sum_{k=1..n} 2^(n mod k).
1
1, 2, 4, 5, 10, 10, 20, 22, 37, 40, 80, 72, 144, 158, 278, 283, 566, 548, 1096, 1120, 2106, 2162, 4324, 4210, 8389, 8584, 16650, 16772, 33544, 33194, 66388, 66968, 131882, 132690, 265222, 263607, 527214, 530138, 1052078, 1054254, 2108508, 2103282, 4206564, 4216760
OFFSET
1,2
COMMENTS
A more precise asymptotic formula is given in the link.
From David Morales Marciel, Oct 19 2015: (Start)
If n is prime then a(n)=2*a(n-1).
It appears that for every (deficient, abundant)-pair of numbers (11+6x, 11+6x+1), a(11+6x) > a(11+6x+1).
(End)
FORMULA
a(n) = 2^ceiling(n/2) + O(2^(n/3)).
MATHEMATICA
Table[Sum[2^Mod[n, k], {k, n}], {n, 44}] (* Michael De Vlieger, Oct 19 2015 *)
PROG
(PARI) a(n) = sum(k=1, n, 2^(n%k))
CROSSREFS
Cf. A198259.
Sequence in context: A307805 A189767 A173817 * A334268 A220696 A275482
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Oct 24 2011
STATUS
approved