OFFSET
0,3
FORMULA
a(n) = [x^n] (1/(1 - x)) * Sum_{k>=0} (-x/(1 - x))^k / Product_{j=1..k} (1 - n*j*x/(1 - x)).
a(n) = n! * [x^n] exp(x + (1 - exp(n*x)) / n), for n > 0.
a(n) = A334192(n,n).
MATHEMATICA
Table[SeriesCoefficient[1/(1 - x) Sum[(-x/(1 - x))^k/Product[(1 - n j x/(1 - x)), {j, 1, k}], {k, 0, n}], {x, 0, n}], {n, 0, 18}]
Join[{1}, Table[n! SeriesCoefficient[Exp[x + (1 - Exp[n x])/n], {x, 0, n}], {n, 1, 18}]]
Join[{1}, Table[Sum[Binomial[n, k]*n^k*BellB[k, -1/n], {k, 0, n}], {n, 1, 18}]] (* Vaclav Kotesovec, Apr 18 2020 *)
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Apr 18 2020
STATUS
approved