The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A334192 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals: A(n,k) = exp(1/k) * Sum_{j>=0} (k*j + 1)^n / ((-k)^j * j!). 3
 1, 1, 0, 1, 0, -1, 1, 0, -2, -1, 1, 0, -3, -4, 2, 1, 0, -4, -9, 4, 9, 1, 0, -5, -16, 0, 64, 9, 1, 0, -6, -25, -16, 189, 248, -50, 1, 0, -7, -36, -50, 384, 1377, 48, -267, 1, 0, -8, -49, -108, 625, 4416, 4374, -6512, -413, 1, 0, -9, -64, -196, 864, 10625, 26368, -26001, -51200, 2180 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,9 LINKS FORMULA G.f. of column k: (1/(1 - x)) * Sum_{j>=0} (-x/(1 - x))^j / Product_{i=1..j} (1 - k*i*x/(1 - x)). E.g.f. of column k: exp(x + (1 - exp(k*x)) / k). EXAMPLE Square array begins:    1,   1,    1,    1,    1,    1,  ...    0,   0,    0,    0,    0,    0,  ...   -1,  -2,   -3,   -4,   -5,   -6,  ...   -1,  -4,   -9,  -16,  -25,  -36,  ...    2,   4,    0,  -16,  -50, -108,  ...    9,  64,  189,  384,  625,  864,  ... MATHEMATICA Table[Function[k, SeriesCoefficient[1/(1 - x) Sum[(-x/(1 - x))^j/Product[(1 - k i x/(1 - x)), {i, 1, j}], {j, 0, n}], {x, 0, n}]][m - n + 1], {m, 0, 10}, {n, 0, m}] // Flatten Table[Function[k, n! SeriesCoefficient[Exp[x + (1 - Exp[k x])/k], {x, 0, n}]][m - n + 1], {m, 0, 10}, {n, 0, m}] // Flatten CROSSREFS Columns k=1..3 give A293037, A334190, A334191. Cf. A309386, A334165, A334193 (diagonal). Sequence in context: A238349 A318754 A318758 * A124790 A325734 A305736 Adjacent sequences:  A334189 A334190 A334191 * A334193 A334194 A334195 KEYWORD sign,tabl AUTHOR Ilya Gutkovskiy, Apr 18 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 17 22:15 EDT 2021. Contains 343992 sequences. (Running on oeis4.)