The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A318754 Number T(n,k) of rooted trees with n nodes such that k equals the maximal number of subtrees extending from the same node and having the same number of nodes; triangle T(n,k), n>=1, 0<=k<=n-1, read by rows. 13
 1, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 3, 4, 1, 1, 0, 6, 9, 3, 1, 1, 0, 12, 22, 9, 3, 1, 1, 0, 25, 54, 23, 8, 3, 1, 1, 0, 51, 139, 60, 23, 8, 3, 1, 1, 0, 111, 346, 166, 61, 22, 8, 3, 1, 1, 0, 240, 892, 447, 167, 61, 22, 8, 3, 1, 1, 0, 533, 2290, 1219, 461, 168, 60, 22, 8, 3, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,8 COMMENTS T(n,k) is defined for n,k >= 0. The triangle contains only the terms with k < n. T(n,k) = 0 for k >= n. LINKS Alois P. Heinz, Rows n = 1..200, flattened FORMULA T(n,k) = A318753(n,k) - A318753(n,k-1) for k > 0, A(n,0) = A063524(n). EXAMPLE Triangle T(n,k) begins: 1; 0, 1; 0, 1, 1; 0, 2, 1, 1; 0, 3, 4, 1, 1; 0, 6, 9, 3, 1, 1; 0, 12, 22, 9, 3, 1, 1; 0, 25, 54, 23, 8, 3, 1, 1; 0, 51, 139, 60, 23, 8, 3, 1, 1; 0, 111, 346, 166, 61, 22, 8, 3, 1, 1; MAPLE g:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add( binomial(g(i-1\$2, k)+j-1, j)*g(n-i*j, i-1, k), j=0..min(k, n/i)))) end: T:= (n, k)-> g(n-1\$2, k) -`if`(k=0, 0, g(n-1\$2, k-1)): seq(seq(T(n, k), k=0..n-1), n=1..14); MATHEMATICA g[n_, i_, k_] := g[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[g[i - 1, i - 1, k] + j - 1, j]*g[n - i*j, i - 1, k], {j, 0, Min[k, n/i]}]]]; T[n_, k_] := g[n - 1, n - 1, k] - If[k == 0, 0, g[n - 1, n - 1, k - 1]]; Table[T[n, k], {n, 1, 14}, {k, 0, n - 1}] // Flatten (* Jean-François Alcover, May 27 2019, after Alois P. Heinz *) CROSSREFS Columns k=0-10 give: A063524, A032305 (for n>1), A318817, A318818, A318819, A318820, A318821, A318822, A318823, A318824, A318825. Row sums give A000081. T(2n+2,n+1) give A255705. Cf. A318753. Sequence in context: A051509 A124816 A238349 * A318758 A334192 A124790 Adjacent sequences: A318751 A318752 A318753 * A318755 A318756 A318757 KEYWORD nonn,tabl AUTHOR Alois P. Heinz, Sep 02 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 21:20 EST 2023. Contains 367540 sequences. (Running on oeis4.)