login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255705
Number of 2n+1-node rooted trees in which the maximal number of nodes in paths starting at a leaf and ending at the first branching node or at the root equals n+1.
4
1, 1, 3, 8, 22, 60, 167, 465, 1306, 3681, 10422, 29597, 84313, 240757, 689035, 1975753, 5675145, 16326198, 47032200, 135658367, 391733593, 1132357784, 3276330780, 9487885056, 27497891241, 79753806451, 231474005120, 672250119756, 1953523496677, 5680002466125
OFFSET
0,3
LINKS
FORMULA
a(n) = A255704(2*n+1,n+1).
a(n) ~ c * d^n / sqrt(n), where d = A051491 = 2.955765285651994974714817524... and c = 0.70755335886284109851526791506579... . - Vaclav Kotesovec, Feb 28 2016
a(n) = A318754(2n+2,n+1) = A318758(2n+2,n+1). - Alois P. Heinz, Sep 02 2018
MAPLE
with(numtheory):
g:= proc(n, k) option remember; `if`(n=0, 1, add(add(d*(g(d-1, k)-
`if`(d=k, 1, 0)), d=divisors(j))*g(n-j, k), j=1..n)/n)
end:
a:= a-> g(2*n, n+1) -`if`(n=0, 0, g(2*n, n)):
seq(a(n), n=0..40);
MATHEMATICA
g[n_, k_] := g[n, k] = If[n == 0, 1, Sum[DivisorSum[j, #*(g[# - 1, k] - If[# == k, 1, 0]) &]*g[n - j, k], {j, 1, n}]/n];
a[n_] := g[2n, n+1] - If[n == 0, 0, g[2n, n]];
Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 24 2017, translated from Maple *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Mar 02 2015
STATUS
approved