OFFSET
0,2
LINKS
Daniel Hoyt, Table of n, a(n) for n = 0..10000
EXAMPLE
For a(0), compute the inverse of 1^4 + 2^4 mod 0^4 + 1^4 which is 0 mod 1, since everything mod 1 is 0.
For a(1), compute the inverse of 2^4 + 3^4 mod 1^4 + 2^4. The inverse of 97 mod 17 (or 12 mod 17) is 10 mod 17 since 10*12 = 120 has remainder 1 mod 17.
PROG
(PARI)
f(n) = n^4 + (n+1)^4;
a(n) = lift(1/Mod(f(n+1), f(n)));
(Python 3)
import gmpy2
soc = [] # sum of 4d-centered cubes
a=0
b=1
for i in range(100):
c = a**4 + b**4
soc.append(c)
a += 1
b += 1
A334137 = []
for i in range(len(soc)-1):
c = gmpy2.invert(soc[i+1], soc[i])
A334137.append(int(c))
print(', '.join([str(x) for x in A334137]))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Daniel Hoyt, Apr 15 2020
STATUS
approved