This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A212594 a(n) is the difference between multiples of 11 with even and odd decimal digit sum in interval [0,10^n). 3
 1, 10, 19, 430, 841, 20602, 40363, 995710, 1951057, 48162410, 94373763, 2329795534, 4565217305, 112701782490, 220838347675, 5451852478622, 10682866609569, 263728727794378, 516774588979187, 12757653047779310, 24998531506579433, 617140623134480698 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Vladimir Shevelev, On monotonic strengthening of Newman-like phenomenon on (2m+1)-multiples in base 2m, arXiv:0710.3177v2 [math.NT], 2007 Index entries for linear recurrences with constant coefficients, signature (0,55,0,-330,0,462,0,-165,0,11). FORMULA For n>=11, a(n) = 55*a(n-2)-330*a(n-4)+462*a(n-6)-165*a(n-8)+11*a(n-10). G.f.: x*(1+10*x-36*x^2-120*x^3+126*x^4+252*x^5-84*x^6-120*x^7+9*x^8+10*x^9)/(1-55*x^2+330*x^4-462*x^6+165*x^8-11*x^10). [Bruno Berselli, May 22 2012] MATHEMATICA LinearRecurrence[{0, 55, 0, -330, 0, 462, 0, -165, 0, 11}, {1, 10, 19, 430, 841, 20602, 40363, 995710, 1951057, 48162410}, 22] (* Bruno Berselli, May 22 2012 *) PROG (MAGMA) m:=23; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(x*(1+10*x-36*x^2-120*x^3+126*x^4+252*x^5-84*x^6-120*x^7+9*x^8+10*x^9)/(1-55*x^2+330*x^4-462*x^6+165*x^8-11*x^10))); // Bruno Berselli, May 22 2012 CROSSREFS Cf. A038754, A212500, A212592, A212593, A091042. Sequence in context: A110368 A006050 A045646 * A255529 A023916 A297353 Adjacent sequences:  A212591 A212592 A212593 * A212595 A212596 A212597 KEYWORD nonn,base,easy AUTHOR Vladimir Shevelev and Peter J. C. Moses, May 22 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 17 22:32 EDT 2018. Contains 313817 sequences. (Running on oeis4.)