login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A023916
Theta series of A*_4 lattice.
4
1, 0, 10, 20, 0, 20, 0, 60, 50, 0, 30, 0, 60, 120, 0, 60, 0, 160, 70, 0, 60, 0, 120, 220, 0, 120, 0, 200, 180, 0, 40, 0, 210, 240, 0, 180, 0, 360, 200, 0, 150, 0, 120, 420, 0, 140, 0, 460, 220, 0, 130, 0, 360, 520, 0, 240, 0, 400, 300, 0, 180, 0, 320, 420, 0, 360, 0, 660, 480, 0, 120
OFFSET
0,3
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 114.
LINKS
S. Ahlgren, The sixth, eighth, ninth and tenth powers of Ramanujan's theta function, Proc. Amer. Math. Soc., 128 (1999), 1333-1338; F_5(q).
G. Nebe and N. J. A. Sloane, Home page for this lattice
FORMULA
Expansion of f(-x)^5 / f(-x^5) + 5 * x * f(-x^5)^5 / f(-x) in powers of x where f() is a Ramanujan theta function. - Michael Somos, Jan 29 2011
G.f. is a period 1 Fourier series which satisfies f(-1 / (5 t)) = 5^(1/2) (t/i)^2 g(t) where q = exp(2*Pi*i*t) and g() is g.f. for A008444. - Michael Somos, Jan 29 2011
a(5*n) = A008444(n). a(5*n + 1) = a(5*n + 4) = 0. - Michael Somos, Jan 29 2011
EXAMPLE
1 + 10*x^2 + 20*x^3 + 20*x^5 + 60*x^7 + 50*x^8 + 30*x^10 + 60*x^12 + ...
1 + 10*q^4 + 20*q^6 + 20*q^10 + 60*q^14 + 50*q^16 + 30*q^20 + 60*q^24 + 120*q^26 + 60*q^30 + 160*q^34 + 70*q^36 + 60*q^40 + 120*q^44 + 220*q^46 + 120*q^50 + 200*q^54 + 180*q^56 + 40*q^60 + O(q^62).
MATHEMATICA
a[n_] := Module[{A = x*O[x]^n}, SeriesCoefficient[QPochhammer[x+A]^5 / QPochhammer[x^5+A] + 5*x*(QPochhammer[x^5+A]^5 / QPochhammer[x+A]), {x, 0, n}]]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Nov 05 2015, adapted from PARI *)
PROG
(Magma) L:=Lattice("A", 4); D:=Dual(L); T1<q> := ThetaSeries(D, 60);
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^5 / eta(x^5 + A) + 5 * x * eta(x^5 + A)^5 / eta(x + A), n))}; /* Michael Somos, Jan 29 2011 */
CROSSREFS
Cf. A008444.
Sequence in context: A334137 A212594 A255529 * A297353 A172503 A107859
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from N. J. A. Sloane, Dec 24 2006
STATUS
approved