login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A333582
Number of Hamiltonian paths in a 7 X n grid starting at the lower left corner and finishing in the upper right corner.
3
1, 1, 32, 111, 1670, 10204, 111712, 851073, 8261289, 68939685, 637113287, 5521505724, 49977297839, 440051896440, 3947537767621, 34992551369200, 312684850861298, 2779712414621925, 24796726969942763, 220708765035288988, 1967401456946216789, 17520501580778152908
OFFSET
1,3
PROG
(Python)
# Using graphillion
from graphillion import GraphSet
import graphillion.tutorial as tl
def A333580(n, k):
if n == 1 or k == 1: return 1
universe = tl.grid(n - 1, k - 1)
GraphSet.set_universe(universe)
start, goal = 1, k * n
paths = GraphSet.paths(start, goal, is_hamilton=True)
return paths.len()
def A333582(n):
return A333580(n, 7)
print([A333582(n) for n in range(1, 25)])
CROSSREFS
Row n=7 of A333580.
Cf. A014584.
Sequence in context: A337786 A233684 A218068 * A039464 A203728 A044283
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 27 2020
STATUS
approved