login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A333583
Number of Hamiltonian paths in an 8 X (2n+1) grid starting at the lower left corner and finishing in the upper right corner.
3
1, 64, 6706, 851073, 114243216, 15695570146, 2178079125340, 303568139329711, 42388918310108440, 5923750747499881068, 828111786035239457647, 115782566867663040724929, 16189114623816733581826838, 2263672174616450290622937801, 316525123224847580237219904819
OFFSET
0,2
PROG
(Python)
# Using graphillion
from graphillion import GraphSet
import graphillion.tutorial as tl
def A333580(n, k):
if n == 1 or k == 1: return 1
universe = tl.grid(n - 1, k - 1)
GraphSet.set_universe(universe)
start, goal = 1, k * n
paths = GraphSet.paths(start, goal, is_hamilton=True)
return paths.len()
def A333583(n):
return A333580(8, 2 * n + 1)
print([A333583(n) for n in range(7)])
CROSSREFS
Sequence in context: A085525 A349506 A264188 * A183243 A264075 A223198
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 27 2020
EXTENSIONS
Terms a(7) and beyond from Andrew Howroyd, Jan 30 2022
STATUS
approved