|
|
A333583
|
|
Number of Hamiltonian paths in an 8 X (2n+1) grid starting at the lower left corner and finishing in the upper right corner.
|
|
3
|
|
|
1, 64, 6706, 851073, 114243216, 15695570146, 2178079125340, 303568139329711, 42388918310108440, 5923750747499881068, 828111786035239457647, 115782566867663040724929, 16189114623816733581826838, 2263672174616450290622937801, 316525123224847580237219904819
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Andrew Howroyd, Table of n, a(n) for n = 0..200
Index entries for sequences related to graphs, Hamiltonian
|
|
PROG
|
(Python)
# Using graphillion
from graphillion import GraphSet
import graphillion.tutorial as tl
def A333580(n, k):
if n == 1 or k == 1: return 1
universe = tl.grid(n - 1, k - 1)
GraphSet.set_universe(universe)
start, goal = 1, k * n
paths = GraphSet.paths(start, goal, is_hamilton=True)
return paths.len()
def A333583(n):
return A333580(8, 2 * n + 1)
print([A333583(n) for n in range(7)])
|
|
CROSSREFS
|
Cf. A014523, A333580.
Sequence in context: A085525 A349506 A264188 * A183243 A264075 A223198
Adjacent sequences: A333580 A333581 A333582 * A333584 A333585 A333586
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Seiichi Manyama, Mar 27 2020
|
|
EXTENSIONS
|
Terms a(7) and beyond from Andrew Howroyd, Jan 30 2022
|
|
STATUS
|
approved
|
|
|
|