Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Mar 28 2020 04:44:46
%S 1,1,32,111,1670,10204,111712,851073,8261289,68939685,637113287,
%T 5521505724,49977297839,440051896440,3947537767621,34992551369200,
%U 312684850861298,2779712414621925,24796726969942763,220708765035288988,1967401456946216789,17520501580778152908
%N Number of Hamiltonian paths in a 7 X n grid starting at the lower left corner and finishing in the upper right corner.
%H Seiichi Manyama, <a href="/A333582/b333582.txt">Table of n, a(n) for n = 1..500</a>
%H <a href="/index/Gra#graphs">Index entries for sequences related to graphs, Hamiltonian</a>
%o (Python)
%o # Using graphillion
%o from graphillion import GraphSet
%o import graphillion.tutorial as tl
%o def A333580(n, k):
%o if n == 1 or k == 1: return 1
%o universe = tl.grid(n - 1, k - 1)
%o GraphSet.set_universe(universe)
%o start, goal = 1, k * n
%o paths = GraphSet.paths(start, goal, is_hamilton=True)
%o return paths.len()
%o def A333582(n):
%o return A333580(n, 7)
%o print([A333582(n) for n in range(1, 25)])
%Y Row n=7 of A333580.
%Y Cf. A014584.
%K nonn
%O 1,3
%A _Seiichi Manyama_, Mar 27 2020