The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A333513 Square array T(n,k), n >= 2, k >= 2, read by antidiagonals, where T(n,k) is the number of self-avoiding closed paths on an n X k grid which pass through four corners ((0,0), (0,k-1), (n-1,k-1), (n-1,0)). 7
 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 7, 11, 7, 1, 1, 17, 49, 49, 17, 1, 1, 41, 229, 373, 229, 41, 1, 1, 99, 1081, 3105, 3105, 1081, 99, 1, 1, 239, 5123, 26515, 44930, 26515, 5123, 239, 1, 1, 577, 24323, 227441, 674292, 674292, 227441, 24323, 577, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 2,8 LINKS Seiichi Manyama, Antidiagonals n = 2..15, flattened FORMULA T(n,k) = T(k,n). EXAMPLE Square array T(n,k) begins: 1, 1, 1, 1, 1, 1, ... 1, 1, 3, 7, 17, 41, ... 1, 3, 11, 49, 229, 1081, ... 1, 7, 49, 373, 3105, 26515, ... 1, 17, 229, 3105, 44930, 674292, ... 1, 41, 1081, 26515, 674292, 17720400, ... PROG (Python) # Using graphillion from graphillion import GraphSet import graphillion.tutorial as tl def A333513(n, k): universe = tl.grid(n - 1, k - 1) GraphSet.set_universe(universe) cycles = GraphSet.cycles() for i in [1, k, k * (n - 1) + 1, k * n]: cycles = cycles.including(i) return cycles.len() print([A333513(j + 2, i - j + 2) for i in range(11 - 1) for j in range(i + 1)]) CROSSREFS Column k=2-7 give: A000012, A001333(n-2), A333514, A333515, A358712, A358713. Main diagonal gives A333466. Cf. A333758. Sequence in context: A075772 A142157 A119608 * A196646 A196601 A196578 Adjacent sequences: A333510 A333511 A333512 * A333514 A333515 A333516 KEYWORD nonn,tabl AUTHOR Seiichi Manyama, Mar 25 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 23 16:55 EDT 2023. Contains 361449 sequences. (Running on oeis4.)