login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A333514 Number of self-avoiding closed paths on an n X 4 grid which pass through four corners ((0,0), (0,3), (n-1,3), (n-1,0)). 2
1, 3, 11, 49, 229, 1081, 5123, 24323, 115567, 549253, 2610697, 12409597, 58988239, 280398495, 1332867179, 6335755801, 30116890013, 143160058769, 680508623307, 3234784886251, 15376488953815, 73091850448509, 347440733910081, 1651552982759797, 7850625988903223 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,2

COMMENTS

Also number of self-avoiding closed paths on a 4 X n grid which pass through four corners ((0,0), (0,n-1), (3,n-1), (3,0)).

LINKS

Table of n, a(n) for n=2..26.

Index entries for linear recurrences with constant coefficients, signature (7,-12,7,-3,-2).

FORMULA

G.f.: x^2*(1-4*x+2*x^2+x^3)/(1-7*x+12*x^2-7*x^3+3*x^4+2*x^5).

a(n) = 7*a(n-1) - 12*a(n-2) + 7*a(n-3) - 3*a(n-4) - 2*a(n-5) for n > 6.

EXAMPLE

a(2) = 1;

+--*--*--+

| |

+--*--*--+

a(3) = 3;

+--*--*--+ +--*--*--+ +--* *--+

| | | | | | | |

* *--* * * * * *--* *

| | | | | | | |

+--* *--+ +--*--*--+ +--*--*--+

a(4) = 11;

+--*--*--+ +--*--*--+ +--*--*--+

| | | | | |

*--*--* * *--* *--* *--* *

| | | | | |

*--*--* * *--* *--* *--* *

| | | | | |

+--*--*--+ +--*--*--+ +--*--*--+

+--*--*--+ +--*--*--+ +--*--*--+

| | | | | |

* *--*--* * *--* * * *--*

| | | | | | | |

* *--*--* * * * * * *--*

| | | | | | | |

+--*--*--+ +--* *--+ +--*--*--+

+--*--*--+ +--*--*--+ +--* *--+

| | | | | | | |

* * * * * *--* *

| | | | | |

* *--* * * * * *--* *

| | | | | | | | | |

+--* *--+ +--*--*--+ +--* *--+

+--* *--+ +--* *--+

| | | | | | | |

* *--* * * * * *

| | | | | |

* * * *--* *

| | | |

+--*--*--+ +--*--*--+

PROG

(PARI) N=40; x='x+O('x^N); Vec(x^2*(1-4*x+2*x^2+x^3)/(1-7*x+12*x^2-7*x^3+3*x^4+2*x^5))

(Python)

# Using graphillion

from graphillion import GraphSet

import graphillion.tutorial as tl

def A333513(n, k):

universe = tl.grid(n - 1, k - 1)

GraphSet.set_universe(universe)

cycles = GraphSet.cycles()

for i in [1, k, k * (n - 1) + 1, k * n]:

cycles = cycles.including(i)

return cycles.len()

def A333514(n):

return A333513(4, n)

print([A333514(n) for n in range(2, 15)])

CROSSREFS

Column k=4 of A333513.

Sequence in context: A025539 A172440 A254536 * A268414 A074528 A246985

Adjacent sequences: A333511 A333512 A333513 * A333515 A333516 A333517

KEYWORD

nonn

AUTHOR

Seiichi Manyama, Mar 25 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 26 23:26 EDT 2023. Contains 361553 sequences. (Running on oeis4.)