login
A119608
Let b(1)=0, b(2)= 1. b(2^m +k) = (b(2^m+1-k) + b(k))/2, 1 <= k <= 2^m, m >= 0. a(n) is numerator of b(n).
2
0, 1, 1, 1, 1, 3, 3, 1, 1, 7, 5, 3, 3, 5, 7, 1, 1, 15, 9, 7, 5, 11, 13, 3, 3, 13, 11, 5, 7, 9, 15, 1, 1, 31, 17, 15, 9, 23, 25, 7, 5, 27, 21, 11, 13, 19, 29, 3, 3, 29, 19, 13, 11, 21, 27, 5, 7, 25, 23, 9, 15, 17, 31, 1, 1, 63, 33, 31, 17, 47, 49, 15, 9, 55, 41, 23, 25, 39, 57, 7, 5, 59, 37
OFFSET
1,6
COMMENTS
Denominator of b(n), for n >= 2, is A053644(n-1).
FORMULA
From Yosu Yurramendi, Mar 13 2019: (Start)
Without a(1) = 0, and shifting the terms one place left:
a(2^m) = 1, m >= 0;
a(2^(m+1)-1-k) = a(2^m+k), m >= 0, 0 < k < 2^m;
a(2^(m+1)+k) = a(2^m+k)+2^(m-floor(log_2(k)))*a(k), m >= 0, 0 < k < 2^m.
(End)
MAPLE
A119608 := proc (mmax) local a, b, m, k, bn, i; b := [0, 1] ; for m from 1 to mmax do for k from 1 to 2^m do bn := (b[2^m+1-k]+b[k])/2 ; b := [op(b), bn] ; od ; od ; a := [] ; for i from 1 to nops(b) do a := [op(a), numer(b[i])] ; od ; RETURN(a) ; end: an := A119608(7) : for i from 1 to nops(an) do printf("%d, ", an[i]) ; od ; # R. J. Mathar, Aug 06 2006
PROG
(R)
maxlevel <- 8 # by choice
b <- c(0, 1)
for(m in 1:maxlevel) for(k in 1:2^m) b[2^m +k] = (b[2^m+1-k] + b[k])/2
d <- vector()
for(m in 0:maxlevel) for(k in 0:(2^m-1)) d[2^m + k] <- 2^m; d <- c(0, d)
a <- b*d
a[1:100]
# Yosu Yurramendi, Feb 05 2019
(R)
a <- 1
maxlevel <- 15 # by choice
for(m in 1:5) {
a[2^(m+1)-1] <- 1
a[2^(m+1) ] <- 1
for(k in 1:(2^m-1)){
a[2^(m+1)-1-k] <- a[2^m+k]
a[2^(m+1) +k] <- a[2^m+k]+2^(m-floor(log2(k)))*a[k]
}}
a <- c(0, a)
a[1:128]
# Yosu Yurramendi, Mar 13 2019
CROSSREFS
Cf. A053644.
Sequence in context: A026515 A075772 A142157 * A375849 A364633 A333513
KEYWORD
easy,nonn,frac
AUTHOR
Leroy Quet, Jun 04 2006
EXTENSIONS
More terms from R. J. Mathar, Aug 06 2006
STATUS
approved