login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A333246
Number of self-avoiding closed paths on an n X n grid which pass through NW corner.
6
1, 7, 97, 4111, 532269, 212372937, 263708907211, 1013068026356375, 11955420069208095719, 432101605951906251627393, 47778407166747833830058004149, 16149888968763663448192636077980753, 16675786862526496319891707194153887550751, 52568166380872328447478940416604864445574575709
OFFSET
2,2
FORMULA
a(n) = A333439(n) - 1 for n > 1.
EXAMPLE
a(2) = 1;
+--*
| |
*--*
a(3) = 7;
+--* +--*--* +--*--* +--*
| | | | | | | |
*--* *--*--* * * * *
| | | |
*--*--* *--*
+--*--* +--*--* +--*
| | | | | |
* *--* *--* * * *--*
| | | | | |
*--* *--* *--*--*
PROG
(Python)
# Using graphillion
from graphillion import GraphSet
import graphillion.tutorial as tl
def A333246(n):
universe = tl.grid(n - 1, n - 1)
GraphSet.set_universe(universe)
cycles = GraphSet.cycles().including(1)
return cycles.len()
print([A333246(n) for n in range(2, 10)])
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 23 2020
EXTENSIONS
a(11), a(13) from Seiichi Manyama, Apr 07 2020
a(10), a(12), a(14)-a(15) from Andrew Howroyd, Jan 30 2022
STATUS
approved