login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A333244
Prime numbers with prime indices in A333243.
5
11, 127, 277, 1063, 2221, 3001, 4397, 5381, 7193, 9319, 10631, 12763, 15299, 15823, 21179, 22093, 24859, 30133, 33967, 37217, 38833, 40819, 43651, 55351, 57943, 60647, 66851, 68639, 77431, 80071, 84347, 87803, 90023, 98519, 101701, 103069, 125113, 127643
OFFSET
1,1
COMMENTS
This sequence can also be generated by the N-sieve.
LINKS
Michael P. May, On the Properties of Special Prime Number Subsequences, arXiv:1608.08082 [math.GM], 2016-2020.
Michael P. May, Properties of Higher-Order Prime Number Sequences, Missouri J. Math. Sci. (2020) Vol. 32, No. 2, 158-170; and arXiv version, arXiv:2108.04662 [math.NT], 2021.
FORMULA
a(n) = prime(A333243(n)).
EXAMPLE
a(1) = prime(A333243(1)) = prime(5) = 11.
MAPLE
b:= proc(n) option remember;
`if`(isprime(n), 1+b(numtheory[pi](n)), 0)
end:
a:= proc(n) option remember; local p;
p:= `if`(n=1, 1, a(n-1));
do p:= nextprime(p);
if (h-> h>2 and h::even)(b(p)) then break fi
od; p
end:
seq(a(n), n=1..42); # Alois P. Heinz, Mar 15 2020
MATHEMATICA
b[n_] := b[n] = If[PrimeQ[n], 1+b[PrimePi[n]], 0];
a[n_] := a[n] = Module[{p}, p = If[n==1, 1, a[n-1]]; While[True, p = NextPrime[p]; If[#>2 && EvenQ[#]&[b[p]], Break[]]]; p];
Array[a, 42] (* Jean-François Alcover, Nov 16 2020, after Alois P. Heinz *)
PROG
(PARI) b(n)={my(k=0); while(isprime(n), k++; n=primepi(n)); k};
apply(x->prime(prime(prime(x))), select(n->b(n)%2, [1..500])) \\ Michel Marcus, Nov 18 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael P. May, Mar 12 2020
STATUS
approved