login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Prime numbers with prime indices in A333243.
5

%I #30 Nov 18 2022 09:23:35

%S 11,127,277,1063,2221,3001,4397,5381,7193,9319,10631,12763,15299,

%T 15823,21179,22093,24859,30133,33967,37217,38833,40819,43651,55351,

%U 57943,60647,66851,68639,77431,80071,84347,87803,90023,98519,101701,103069,125113,127643

%N Prime numbers with prime indices in A333243.

%C This sequence can also be generated by the N-sieve.

%H Michael De Vlieger, <a href="/A333244/b333244.txt">Table of n, a(n) for n = 1..10000</a>

%H Michael P. May, <a href="https://arxiv.org/abs/1608.08082">On the Properties of Special Prime Number Subsequences</a>, arXiv:1608.08082 [math.GM], 2016-2020.

%H Michael P. May, <a href="https://doi.org/10.35834/2020/3202158">Properties of Higher-Order Prime Number Sequences</a>, Missouri J. Math. Sci. (2020) Vol. 32, No. 2, 158-170; and <a href="https://arxiv.org/abs/2108.04662">arXiv version</a>, arXiv:2108.04662 [math.NT], 2021.

%F a(n) = prime(A333243(n)).

%e a(1) = prime(A333243(1)) = prime(5) = 11.

%p b:= proc(n) option remember;

%p `if`(isprime(n), 1+b(numtheory[pi](n)), 0)

%p end:

%p a:= proc(n) option remember; local p;

%p p:= `if`(n=1, 1, a(n-1));

%p do p:= nextprime(p);

%p if (h-> h>2 and h::even)(b(p)) then break fi

%p od; p

%p end:

%p seq(a(n), n=1..42); # _Alois P. Heinz_, Mar 15 2020

%t b[n_] := b[n] = If[PrimeQ[n], 1+b[PrimePi[n]], 0];

%t a[n_] := a[n] = Module[{p}, p = If[n==1, 1, a[n-1]]; While[True, p = NextPrime[p]; If[#>2 && EvenQ[#]&[b[p]], Break[]]]; p];

%t Array[a, 42] (* _Jean-François Alcover_, Nov 16 2020, after _Alois P. Heinz_ *)

%o (PARI) b(n)={my(k=0); while(isprime(n), k++; n=primepi(n)); k};

%o apply(x->prime(prime(prime(x))), select(n->b(n)%2, [1..500])) \\ _Michel Marcus_, Nov 18 2022

%Y Cf. A078442, A262275, A333242, A333243.

%K nonn

%O 1,1

%A _Michael P. May_, Mar 12 2020