Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #114 Jan 31 2022 03:14:52
%S 1,7,97,4111,532269,212372937,263708907211,1013068026356375,
%T 11955420069208095719,432101605951906251627393,
%U 47778407166747833830058004149,16149888968763663448192636077980753,16675786862526496319891707194153887550751,52568166380872328447478940416604864445574575709
%N Number of self-avoiding closed paths on an n X n grid which pass through NW corner.
%F a(n) = A333439(n) - 1 for n > 1.
%e a(2) = 1;
%e +--*
%e | |
%e *--*
%e a(3) = 7;
%e +--* +--*--* +--*--* +--*
%e | | | | | | | |
%e *--* *--*--* * * * *
%e | | | |
%e *--*--* *--*
%e +--*--* +--*--* +--*
%e | | | | | |
%e * *--* *--* * * *--*
%e | | | | | |
%e *--* *--* *--*--*
%o (Python)
%o # Using graphillion
%o from graphillion import GraphSet
%o import graphillion.tutorial as tl
%o def A333246(n):
%o universe = tl.grid(n - 1, n - 1)
%o GraphSet.set_universe(universe)
%o cycles = GraphSet.cycles().including(1)
%o return cycles.len()
%o print([A333246(n) for n in range(2, 10)])
%Y Cf. A140517, A333247, A333323, A333438, A333439, A333466.
%K nonn
%O 2,2
%A _Seiichi Manyama_, Mar 23 2020
%E a(11), a(13) from _Seiichi Manyama_, Apr 07 2020
%E a(10), a(12), a(14)-a(15) from _Andrew Howroyd_, Jan 30 2022