The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A333209 a(n) is the denominator of Sum_{i >= 0} 1/(Lucas(i)*Lucas(i+2n)), with Lucas(i) as defined in A000032. 2
 2, 36, 7392, 1688148, 197412831, 21085413226416, 101768454084335346, 60343478516053297339236, 73240105330540144095414793632, 1956470757376233684880813258936380492, 32802418997525523144166495047229414174839, 202042966989952174292936124782341088713724476716231 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The numerators are given in A333208. See A333088 and A333089 for similar fractions for infinite sums of Fibonacci numbers. Sum_{i >= 0} 1/(Lucas(i)*Lucas(i+2n)) is a fraction for n > 0. Sum_{i >= 0} 1/Lucas(i)^2 = 1/4 + A105394, i.e., the n = 0 case, is believed to be transcendental. LINKS A.H.M. Smeets, Table of n, a(n) for n = 1..54 FORMULA a(n) = denominator of (1/Fibonacci(2n)) * Sum_{i = 1..n} 1/(Lucas(2i-2)*Lucas(2i-1)). Lim_{n -> inf} (A333208(n)/a(n)) / (A333208(n-1)/a(n-1)) = 1 - 1/phi = 1/phi^2 = A132318. The following generalization holds: (Start) Let H_(a,b) (n) be defined by H_(a,b) (0) = a, H_(a,b) (1) = b and H_(a,b) (n) = H_(a,b) (n-1) + H_(a,b) (n-2) for n > 1, then Sum_{i >= 0} 1/(H_(a,b) (i)*H_(a,b) (i+2n)) = (1/Fibonacci(2n)) * Sum_{i=1..n} 1/(H_(a,b) (2i-2)*H_(a,b) (2i-1)) for n > 0, and are thus all fractions. Specially, H_(0,1) are the Fibonacci numbers A000045, H_(2,1) as here, are the Lucas numbers A000032, and H_(3,1) are the Pibonacci numbers A104449. (End) EXAMPLE These infinite sums begin: 1/2, 7/36, 551/7392, ... MATHEMATICA a[n_] := Denominator[Sum[1/(LucasL[2 i - 2]*LucasL[2 i - 1]), {i, 1, n}]/Fibonacci[2 n]]; Array[a, 12] (* Amiram Eldar, Mar 11 2020 *) PROG (Python) from math import gcd f0, f1, g0, g1, snum, sden, n = 1, 1, 1, 2, 0, 1, 0 while n < 12: n = n+1 snum, sden = g0*g1*snum+sden, sden*g0*g1 d = gcd(snum, sden*f0) print(n, sden*f0//d) f0, f1, g0, g1 = 2*f0+f1, f0+f1, 2*g0+g1, g0+g1 # A.H.M. Smeets, Nov 30 2020 (Python) from math import gcd f0, f1, g0, g1, snum, sden, n = 1, 1, 1, 2, 0, 1, 0 while n < 12: n = n+1 snum, sden = g0*g1*snum+sden, sden*g0*g1 d = gcd(snum, sden*f0) print(n, sden*f0//d) f0, f1, g0, g1 = 2*f0+f1, f0+f1, 2*g0+g1, g0+g1 # A.H.M. Smeets, Nov 30 2020 CROSSREFS Cf. A000032, A105394, A132318, A333088, A333089, A333208. Sequence in context: A047832 A004003 A060739 * A224733 A264953 A308942 Adjacent sequences: A333206 A333207 A333208 * A333210 A333211 A333212 KEYWORD nonn,frac AUTHOR A.H.M. Smeets, Mar 11 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 31 21:40 EDT 2023. Contains 361673 sequences. (Running on oeis4.)