OFFSET
1,1
COMMENTS
LINKS
A.H.M. Smeets, Table of n, a(n) for n = 1..54
FORMULA
a(n) = denominator of (1/Fibonacci(2n)) * Sum_{i = 1..n} 1/(Lucas(2i-2)*Lucas(2i-1)).
The following generalization holds: (Start)
Let H_(a,b) (n) be defined by H_(a,b) (0) = a, H_(a,b) (1) = b and H_(a,b) (n) = H_(a,b) (n-1) + H_(a,b) (n-2) for n > 1, then
Sum_{i >= 0} 1/(H_(a,b) (i)*H_(a,b) (i+2n)) = (1/Fibonacci(2n)) * Sum_{i=1..n} 1/(H_(a,b) (2i-2)*H_(a,b) (2i-1)) for n > 0, and are thus all fractions. Specially, H_(0,1) are the Fibonacci numbers A000045, H_(2,1) as here, are the Lucas numbers A000032, and H_(3,1) are the Pibonacci numbers A104449. (End)
EXAMPLE
These infinite sums begin: 1/2, 7/36, 551/7392, ...
MATHEMATICA
a[n_] := Denominator[Sum[1/(LucasL[2 i - 2]*LucasL[2 i - 1]), {i, 1, n}]/Fibonacci[2 n]]; Array[a, 12] (* Amiram Eldar, Mar 11 2020 *)
PROG
(Python)
from math import gcd
f0, f1, g0, g1, snum, sden, n = 1, 1, 1, 2, 0, 1, 0
while n < 12:
n = n+1
snum, sden = g0*g1*snum+sden, sden*g0*g1
d = gcd(snum, sden*f0)
print(n, sden*f0//d)
f0, f1, g0, g1 = 2*f0+f1, f0+f1, 2*g0+g1, g0+g1 # A.H.M. Smeets, Nov 30 2020
(Python)
from math import gcd
f0, f1, g0, g1, snum, sden, n = 1, 1, 1, 2, 0, 1, 0
while n < 12:
n = n+1
snum, sden = g0*g1*snum+sden, sden*g0*g1
d = gcd(snum, sden*f0)
print(n, sden*f0//d)
f0, f1, g0, g1 = 2*f0+f1, f0+f1, 2*g0+g1, g0+g1 # A.H.M. Smeets, Nov 30 2020
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
A.H.M. Smeets, Mar 11 2020
STATUS
approved