login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A333206
a(n) is the least decimal digit of n^3.
1
0, 1, 8, 2, 4, 1, 1, 3, 1, 2, 0, 1, 1, 1, 2, 3, 0, 1, 2, 5, 0, 1, 0, 1, 1, 1, 1, 1, 1, 2, 0, 1, 2, 3, 0, 2, 4, 0, 2, 1, 0, 1, 0, 0, 1, 1, 3, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 2, 0, 1, 2, 2, 0, 1, 0, 0, 1, 2, 0, 0, 1, 3, 3, 2, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 6, 0, 0, 3, 3, 1, 1
OFFSET
0,3
COMMENTS
Dean Hickerson found an infinite sequence of n such that a(n) > 0 (see Guy, sec F24). Are there infinitely many such that a(n) > 1? If not, what is the greatest n with a(n)=k for each k > 1?
Heuristically, we should expect on the order of ((10-m)^3/100)^d terms n with d digits and a(n) >= m. Since 5^3/100 > 1 > 4^3/100 we should expect infinitely many terms with a(n) >= 5 but only finitely many terms with a(n) >= 6. See A291644 for a(n) = 5. There are only two n <= 10^6 with a(n) >= 6, namely a(2) = 8 and a(92) = 6.
REFERENCES
R. Guy, Unsolved Problems in Number Theory (Third edition), Springer 2004.
LINKS
FORMULA
a(n) = A054054(n^3).
EXAMPLE
The least digit of 6^3=216 is 1, so a(6)=1.
MAPLE
seq(min(convert(n^3, base, 10)), n=0..200);
KEYWORD
nonn,base
AUTHOR
Robert Israel, Mar 12 2020
STATUS
approved