login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A333171 a(n) = Sum_{k=0..n} d(k^2 + 1), where d(k) is the number of divisors of k (A000005). 1
1, 3, 5, 9, 11, 15, 17, 23, 27, 31, 33, 37, 41, 49, 51, 55, 57, 65, 71, 75, 77, 85, 89, 97, 99, 103, 105, 113, 117, 121, 125, 133, 139, 147, 151, 155, 157, 165, 171, 175, 177, 183, 187, 199, 203, 207, 211, 227, 231, 235, 239, 243, 247, 255, 257, 265, 267, 283 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
REFERENCES
Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 166.
LINKS
Christopher Hooley, On the number of divisors of quadratic polynomials, Acta Mathematica, Vol. 110 (1963), pp. 97-114.
James McKee, On the average number of divisors of quadratic polynomials, Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 117. No. 3 (1995), pp. 389-392, alternative link.
James McKee, The average number of divisors of an irreducible quadratic polynomial, Mathematical Proceedings of the Cambridge Philosophical Society. Vol. 126. No. 1. (1999), pp. 17-22.
FORMULA
a(n) ~ (3/Pi) * n * log(n).
EXAMPLE
a(0) = d(0^1 + 1) = d(1) = 1.
a(1) = d(0^1 + 1) + d(1^1 + 1) = d(1) + d(2) = 1 + 2 = 3.
MATHEMATICA
Accumulate @ Table[DivisorSigma[0, k^2 + 1], {k, 0, 100}]
PROG
(PARI) a(n) = sum(k=0, n, numdiv(k^2+1)); \\ Michel Marcus, Mar 10 2020
CROSSREFS
Partial sums of A193432.
Sequence in context: A268174 A166104 A164121 * A078651 A268732 A101114
KEYWORD
nonn
AUTHOR
Amiram Eldar, Mar 09 2020
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 8 17:50 EDT 2024. Contains 375753 sequences. (Running on oeis4.)