|
|
A333171
|
|
a(n) = Sum_{k=0..n} d(k^2 + 1), where d(k) is the number of divisors of k (A000005).
|
|
1
|
|
|
1, 3, 5, 9, 11, 15, 17, 23, 27, 31, 33, 37, 41, 49, 51, 55, 57, 65, 71, 75, 77, 85, 89, 97, 99, 103, 105, 113, 117, 121, 125, 133, 139, 147, 151, 155, 157, 165, 171, 175, 177, 183, 187, 199, 203, 207, 211, 227, 231, 235, 239, 243, 247, 255, 257, 265, 267, 283
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
REFERENCES
|
Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 166.
|
|
LINKS
|
|
|
FORMULA
|
a(n) ~ (3/Pi) * n * log(n).
|
|
EXAMPLE
|
a(0) = d(0^1 + 1) = d(1) = 1.
a(1) = d(0^1 + 1) + d(1^1 + 1) = d(1) + d(2) = 1 + 2 = 3.
|
|
MATHEMATICA
|
Accumulate @ Table[DivisorSigma[0, k^2 + 1], {k, 0, 100}]
|
|
PROG
|
(PARI) a(n) = sum(k=0, n, numdiv(k^2+1)); \\ Michel Marcus, Mar 10 2020
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|