login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268732
Sum of the numbers of divisors of gcd(x,y) with x*y <= n.
2
1, 3, 5, 9, 11, 15, 17, 23, 27, 31, 33, 41, 43, 47, 51, 60, 62, 70, 72, 80, 84, 88, 90, 102, 106, 110, 116, 124, 126, 134, 136, 148, 152, 156, 160, 176, 178, 182, 186, 198, 200, 208, 210, 218, 226, 230, 232, 250, 254, 262, 266, 274, 276, 288, 292, 304, 308, 312, 314, 330
OFFSET
1,2
COMMENTS
Partial sums of A124315.
LINKS
Masum Billal, Asymptotic Result of A Generalization of A GCD-Sum, arXiv:2206.05023 [math.NT], 2022.
Adrian W. Dudek, On the Success of Mishandling Euclid's Lemma, arXiv:1602.03555 [math.HO], 2016. See Remark 1 p. 3.
Adrian W. Dudek, On the Success of Mishandling Euclid's Lemma, The American Mathematical Monthly, Vol. 123, No. 9 (2016), 924-927.
Randell Heyman, A summation involving the number of divisors function and the GCD function, arXiv:2003.13937 [math.NT], 2020.
FORMULA
a(n) = Sum_{k=1..floor(sqrt(n))} (2*Sum_{j=1..floor(sqrt(n/k^2))} floor(n/(j*k^2)) - floor(sqrt(n/k^2))^2). - Daniel Suteu, Jan 08 2019
a(n) = n*zeta(2)*(log(n) + 2*gamma - 1 + 2*zeta'(2)/zeta(2)) + O(sqrt(n)*log(n)), where gamma is the Euler-Mascheroni constant A001620. - Daniel Suteu, Jan 11 2019
MATHEMATICA
Table[Total@ Flatten@ Map[Function[k, DivisorSigma[0, GCD[#, k]] & /@ Select[Range@ n, # k <= n &]], Range@ n], {n, 60}] (* Michael De Vlieger, Feb 12 2016 *)
PROG
(PARI) a(n) = sum(k=1, n, sumdiv(k, d, numdiv(gcd(d, k/d))));
(PARI) a(n) = sum(k=1, sqrtint(n), 2*sum(j=1, sqrtint(n\(k*k)), n\(j*k*k))-sqrtint(n\(k*k))^2); \\ Daniel Suteu, Jan 08 2019
(PARI) a(n)=sum(k=1, n, sum(j=1, sqrt(n/k), floor(n/k/j^2))); \\ Benoit Cloitre, Oct 02 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Marcus, Feb 12 2016
STATUS
approved