login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268730
a(n) = Product_{k = 0..n} 2*(8*k + 5).
2
10, 260, 10920, 633360, 46868640, 4218177600, 447126825600, 54549472723200, 7527827235801600, 1159285394313446400, 197078517033285888000, 36656604168191175168000, 7404634041974617383936000, 1614210221150466589698048000, 377725191749209181989343232000
OFFSET
0,1
LINKS
FORMULA
a(n) = (2^(4*n + 13/4)*Gamma(1/8)*Gamma(n + 13/8))/(sqrt(Pi)*Gamma(1/4)), where Gamma(x) is the gamma function.
a(n) = 2*(8*n + 5)*a(n - 1), a(0)=10.
Sum_{n>=0} 1/a(n) = (exp(1/16)*(Gamma(5/8) - Gamma(5/8, 1/16)))/(2*sqrt(2)) = 0.10393932939417..., where Gamma(a, x) is the incomplete gamma function.
a(n) ~ sqrt(Pi) * 2^(4*n+9/2) * n^(n+9/8) / (Gamma(5/8) * exp(n)). - Vaclav Kotesovec, Feb 20 2016
G.f.: 10/(1-b(1)x/(1-(b(1)-10)x/(1-b(2)x/(1-(b(2)-10)x/(1-b(3)x/(...)))))), where b(n)=2(5+8n), i.e. 26,42,58,74. - Benedict W. J. Irwin, Feb 24 2016
a(n) = 2^(n+1)*A147625(n+2). - R. J. Mathar, Jun 07 2016
E.g.f.: 10/(1 - 16*x)^(13/8). - Ilya Gutkovskiy, Jun 07 2016
EXAMPLE
a(0) = (1 + 2 + 3 + 4) = 10;
a(1) = (1 + 2 + 3 + 4)*(5 + 6 + 7 + 8) = 260;
a(2) = (1 + 2 + 3 + 4)*(5 + 6 + 7 + 8) *(9 + 10 + 11 + 12) = 10920;
a(3) = (1 + 2 + 3 + 4)*(5 + 6 + 7 + 8) *(9 + 10 + 11 + 12)*(13 + 14 + 15 + 16) = 633360, etc.
MATHEMATICA
FullSimplify[Table[(2^(4 n + 13/4) Gamma[1/8] Gamma[n + 13/8])/(Sqrt[Pi] Gamma[1/4]), {n, 0, 14}]]
Table[Product[16 k + 10, {k, 0, n - 1}], {n, 20}] (* Vincenzo Librandi, Feb 12 2016 *)
PROG
(Magma) [&*[(16*k+10): k in [0..n-1]]: n in [1..20]]; // Vincenzo Librandi, Feb 12 2016
(PARI) x='x+O('x^50); Vec(serlaplace(10/(1 - 16*x)^(13/8))) \\ G. C. Greubel, Apr 09 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Feb 12 2016
STATUS
approved