login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Product_{k = 0..n} 2*(8*k + 5).
2

%I #24 Sep 08 2022 08:46:15

%S 10,260,10920,633360,46868640,4218177600,447126825600,54549472723200,

%T 7527827235801600,1159285394313446400,197078517033285888000,

%U 36656604168191175168000,7404634041974617383936000,1614210221150466589698048000,377725191749209181989343232000

%N a(n) = Product_{k = 0..n} 2*(8*k + 5).

%H G. C. Greubel, <a href="/A268730/b268730.txt">Table of n, a(n) for n = 0..300</a>

%F a(n) = (2^(4*n + 13/4)*Gamma(1/8)*Gamma(n + 13/8))/(sqrt(Pi)*Gamma(1/4)), where Gamma(x) is the gamma function.

%F a(n) = 2*(8*n + 5)*a(n - 1), a(0)=10.

%F Sum_{n>=0} 1/a(n) = (exp(1/16)*(Gamma(5/8) - Gamma(5/8, 1/16)))/(2*sqrt(2)) = 0.10393932939417..., where Gamma(a, x) is the incomplete gamma function.

%F a(n) ~ sqrt(Pi) * 2^(4*n+9/2) * n^(n+9/8) / (Gamma(5/8) * exp(n)). - _Vaclav Kotesovec_, Feb 20 2016

%F G.f.: 10/(1-b(1)x/(1-(b(1)-10)x/(1-b(2)x/(1-(b(2)-10)x/(1-b(3)x/(...)))))), where b(n)=2(5+8n), i.e. 26,42,58,74. - _Benedict W. J. Irwin_, Feb 24 2016

%F a(n) = 2^(n+1)*A147625(n+2). - _R. J. Mathar_, Jun 07 2016

%F E.g.f.: 10/(1 - 16*x)^(13/8). - _Ilya Gutkovskiy_, Jun 07 2016

%e a(0) = (1 + 2 + 3 + 4) = 10;

%e a(1) = (1 + 2 + 3 + 4)*(5 + 6 + 7 + 8) = 260;

%e a(2) = (1 + 2 + 3 + 4)*(5 + 6 + 7 + 8) *(9 + 10 + 11 + 12) = 10920;

%e a(3) = (1 + 2 + 3 + 4)*(5 + 6 + 7 + 8) *(9 + 10 + 11 + 12)*(13 + 14 + 15 + 16) = 633360, etc.

%t FullSimplify[Table[(2^(4 n + 13/4) Gamma[1/8] Gamma[n + 13/8])/(Sqrt[Pi] Gamma[1/4]), {n, 0, 14}]]

%t Table[Product[16 k + 10, {k, 0, n - 1}], {n, 20}] (* _Vincenzo Librandi_, Feb 12 2016 *)

%o (Magma) [&*[(16*k+10): k in [0..n-1]]: n in [1..20]]; // _Vincenzo Librandi_, Feb 12 2016

%o (PARI) x='x+O('x^50); Vec(serlaplace(10/(1 - 16*x)^(13/8))) \\ _G. C. Greubel_, Apr 09 2017

%Y Cf. A000027, A113770, A147630.

%K nonn,easy

%O 0,1

%A _Ilya Gutkovskiy_, Feb 12 2016