|
|
A164121
|
|
a(1)=1. a(n) = the smallest odd integer > a(n-1) such that a(n)*2 - a(n-1) is prime.
|
|
2
|
|
|
1, 3, 5, 9, 11, 15, 17, 23, 27, 29, 33, 35, 39, 41, 47, 53, 57, 59, 63, 65, 69, 71, 75, 77, 83, 93, 95, 99, 101, 105, 107, 117, 127, 129, 133, 135, 137, 143, 147, 149, 153, 155, 159, 161, 167, 173, 177, 179, 185, 189, 191, 195, 197, 213, 221, 225, 227, 233, 237, 239
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
|
|
MAPLE
|
R:= 1; x:= 1: count:= 1:
for y from x+2 by 2 do
if isprime(2*y-x) then
R:= R, y; x:= y; count:= count+1;
if count = 100 then break fi;
fi
od:
|
|
MATHEMATICA
|
soi[a_]:=Module[{k=a+2}, While[!PrimeQ[2k-a], k=k+2]; k]; NestList[soi, 1, 60] (* Harvey P. Dale, Sep 02 2023 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|