login
A333168
a(n) = Sum_{k=0..n} r_2(k^2 + 1), where r_2(k) is the number of ways of writing k as a sum of 2 squares (A004018).
1
4, 8, 16, 24, 32, 40, 48, 60, 76, 84, 92, 100, 116, 132, 140, 148, 156, 172, 196, 204, 212, 228, 244, 260, 268, 276, 284, 300, 316, 324, 340, 356, 380, 396, 412, 420, 428, 444, 468, 476, 484, 496, 512, 536, 552, 560, 576, 608, 624, 632, 648, 656, 672, 688, 696
OFFSET
0,1
REFERENCES
Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 166.
LINKS
E. J. Scourfield, The divisors of a quadratic polynomial, Glasgow Mathematical Journal, Vol. 5, No. 1 (1961), pp. 8-20.
FORMULA
a(n) ~ (8/Pi) * n * log(n).
EXAMPLE
a(0) = r_2(0^2 + 1) = r_2(1) = A004018(1) = 4.
a(1) = r_2(0^2 + 1) + r_2(1^1 + 1) = r_2(1) + r_2(2) = A004018(1) + A004018(2) = 4 + 4 = 8.
MATHEMATICA
Accumulate @ Table[SquaresR[2, k^2 + 1], {k, 0, 100}]
CROSSREFS
Partial sums of A333167.
Sequence in context: A097057 A347931 A354810 * A306219 A160746 A160740
KEYWORD
nonn
AUTHOR
Amiram Eldar, Mar 09 2020
STATUS
approved