login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097057
Number of integer solutions to a^2 + b^2 + 2*c^2 + 2*d^2 = n.
20
1, 4, 8, 16, 24, 24, 32, 32, 24, 52, 48, 48, 96, 56, 64, 96, 24, 72, 104, 80, 144, 128, 96, 96, 96, 124, 112, 160, 192, 120, 192, 128, 24, 192, 144, 192, 312, 152, 160, 224, 144, 168, 256, 176, 288, 312, 192, 192, 96, 228, 248, 288, 336, 216, 320, 288, 192, 320, 240, 240
OFFSET
0,2
COMMENTS
a^2 + b^2 + 2*c^2 + 2*d^2 is another (cf. A000118) of Ramanujan's 54 universal quaternary quadratic forms. - Michael Somos, Apr 01 2008
REFERENCES
B. C. Berndt, Ramanujan's Notebooks Part V, Springer-Verlag, see p. 373 Entry 31.
Jesse Ira Deutsch, Bumby's technique and a result of Liouville on a quadratic form, Integers 8 (2008), no. 2, A2, 20 pp. MR2438287 (2009g:11047).
N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 78, Eq. (32.29).
S. Ramanujan, Collected Papers, Chap. 20, Cambridge Univ. Press 1927 (Proceedings of the Camb. Phil. Soc., 19 (1917), 11-21).
LINKS
Jesse Ira Deutsch, A quaternionic proof of the representation formula of a quaternary quadratic form, J. Number Theory 113 (2005), no. 1, 149-174. MR2141762 (2006b:11033).
Olivia X. M. Yao and Ernest X. W. Xia, Combinatorial proofs of five formulas of Liouville, Discrete Math. 318 (2014), 1-9. MR3141622.
FORMULA
Euler transform of period 8 sequence [4, -2, 4, -8, 4, -2, 4, -4, ...]. - Michael Somos, Sep 17 2004
Multiplicative with a(n) = 4*b(n), b(2) = 2, b(2^e) = 6 if e > 1, b(p^e) = (p^(e+1) - 1) / (p - 1) if p > 2. - Michael Somos, Sep 17 2004
Expansion of (eta(q^2) * eta(q^4))^6 / (eta(q) * eta(q^8))^4 in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 8 (t/i)^2 f(t) where q = exp(2 Pi i t). - Michael Somos, Jul 05 2011
G.f.: (theta_3(q) * theta_3(q^2))^2.
G.f.: Product_{k>0} ((1-x^(2k))(1-x^(4k)))^6/((1-x^k)(1-x^(8k)))^4.
G.f.: 1 + Sum_{k>0} 8 * x^(4*k) / (1 + x^(4*k))^2 + 4 * x^(2*k-1) / (1 - x^(2*k-1))^2 = 1 + Sum_{k>0} (2 + (-1)^k) * 4*k * x^(2*k) / (1 + x^(2*k)) + 4*(2*k - 1) * x^(2*k-1) / (1 - x^(2*k - 1)). - Michael Somos, Oct 22 2005
a(2*n) = A000118(n). a(2*n + 1) = 4 * A008438(n). a(4*n) = A004011(n). a(4*n + 1) = 4 * A112610(n). a(4*n + 2) = 8 * A008438(n). a(4*n + 3) = 16 * A097723(n). - Michael Somos, Jul 05 2011
EXAMPLE
1 + 4*q + 8*q^2 + 16*q^3 + 24*q^4 + 24*q^5 + 32*q^6 + 32*q^7 + 24*q^8 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^2])^2, {q, 0, n}] (* Michael Somos, Jul 05 2011 *)
f[p_, e_] := (p^(e+1)-1)/(p-1); f[2, 1] = 2; f[2, e_] := 6; a[0] = 1; a[1] = 4; a[n_] := 4 * Times @@ f @@@ FactorInteger[n]; Array[a, 100, 0] (* Amiram Eldar, Aug 22 2023 *)
PROG
(PARI) {a(n) = local(t); if( n<1, n>=0, t = 2^valuation( n, 2); 4 * sigma(n/t) * if( t>2, 6, t))} \\ Michael Somos, Sep 17 2004
(PARI) {a(n) = local(A = x * O(x^n)); polcoeff( (eta(x^2 + A) * eta(x^4 + A))^6 / (eta(x + A) * eta(x^8 + A))^4, n)} \\ Michael Somos, Sep 17 2004
(PARI) {a(n) = if( n<1, n==0, 2 * qfrep([ 1, 0, 0, 0; 0, 1, 0, 0; 0, 0, 2, 0; 0, 0, 0, 2], n)[n])} \\ Michael Somos, Oct 29 2005
(PARI) A097057(n)=if(n, sigma(n>>n=valuation(n, 2))*if(n>1, 24, 4<<n), 1) \\ M. F. Hasler, May 07 2018
CROSSREFS
a^2 + b^2 + 2*c^2 + m*d^2 = n: this sequence (m=2), A320124 (m=3), A320125 (m=4), A320126 (m=5), A320127 (m=6), A320128 (m=7), A320130 (m=8), A320131 (m=9), A320132 (m=10), A320133 (m=11), A320134 (m=12), A320135 (m=13), A320136 (m=14).
Sequence in context: A358435 A312823 A133690 * A347931 A354810 A333168
KEYWORD
nonn,mult
AUTHOR
N. J. A. Sloane, Sep 15 2004
EXTENSIONS
Added keyword mult and minor edits by M. F. Hasler, May 07 2018
STATUS
approved