login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332527
Decimal expansion of the maximal curvature of the tangent function.
4
3, 7, 0, 7, 8, 2, 5, 8, 3, 0, 8, 1, 0, 8, 8, 7, 7, 4, 0, 0, 4, 8, 7, 1, 8, 5, 1, 2, 0, 2, 3, 9, 3, 8, 0, 7, 6, 9, 8, 4, 8, 0, 7, 9, 5, 9, 2, 9, 5, 7, 5, 6, 4, 0, 5, 5, 7, 3, 9, 3, 3, 0, 3, 0, 3, 4, 1, 3, 4, 2, 7, 6, 5, 8, 3, 6, 5, 5, 4, 7, 8, 5, 1, 6, 5, 1
OFFSET
0,1
COMMENTS
The maximal curvature of the graph of y = tan x occurs at two points (x,y) on every branch. One of the points has y > 0. Let T be the branch passes through (0,0) and lies in the first quadrant. The maximal curvature, K, occurs at a point (u,v):
u = 0.69370020859538391768128598538590650878367123906075077978...
v = 0.83157590509648960702865222211498485994964124481665011305...
K = 0.37078258308108877400487185120239380769848079592957564055...
The osculating circle at (u,v) has
center = (x,y) = (-1.627936796879617446318318..., 2.204092389413177659055893...) .
radius = 1/K = 2.696998310142587559290309046607440826421048...
EXAMPLE
maximal curvature: K = 0.370782583081088774004871851202393807698480795929575640...
MATHEMATICA
centMin = {xMin = ArcCos[Root[3 - 4 #1^2 - 3 #1^4 + 2 #1^6 &, 3]],
Root[-2 - 2 #1^2 + 5 #1^4 + 3 #1^6 &, 2]};
{centOsc, rOsc} = {{-(1/2) Cot[#1] (1 + Sec[#1]^4) + #1,
Cot[#1] - 1/4 Sin[2 #1] + (3 Tan[#1])/2},
Sqrt[1/4 Cos[#1]^4 Cot[#1]^2 (1 + Sec[#1]^4)^3]} &[xMin];
Show[Plot[{Tan[x], (-# Sec[#]^2) + x Sec[#]^2 +
Tan[#], {(# Cos[#]^2) - x Cos[#]^2 + Tan[#]}}, {x, -5, 3},
AspectRatio -> Automatic, ImageSize -> 500, PlotRange -> {-2, 4}],
Graphics[{PointSize[Medium], Circle[centOsc, rOsc],
Point[centOsc], Point[centMin]}]] &[xMin]
N[centOsc, 100] (* center of osculating circle *)
N[rOsc, 100] (* radius of osculating circle *)
N[{ArcCos[Root[3 - 4 #1^2 - 3 #1^4 + 2 #1^6 &, 3]],
Root[-2 - 2 #1^2 + 5 #1^4 + 3 #1^6 &,
2]}, 100] (* maximal curvature point *)
N[1/rOsc, 100] (* curvature *)
(* Peter J. C. Moses, May 07 2020 *)
CROSSREFS
Cf. A332527.
Sequence in context: A199778 A369381 A086729 * A175576 A134976 A192044
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Jun 15 2020
STATUS
approved