login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A332526
Decimal expansion of the minimal distance between distinct branches of the tangent function; see Comments.
1
2, 3, 7, 5, 0, 6, 9, 1, 4, 6, 0, 4, 0, 1, 7, 6, 3, 4, 9, 4, 3, 9, 8, 5, 1, 5, 5, 8, 7, 7, 8, 9, 8, 2, 4, 8, 7, 8, 6, 6, 2, 6, 7, 8, 0, 6, 5, 0, 8, 8, 4, 1, 7, 9, 2, 9, 2, 6, 9, 8, 5, 6, 4, 5, 9, 7, 5, 4, 8, 6, 6, 7, 0, 2, 9, 6, 9, 1, 3, 1, 6, 3, 3, 4, 1, 1
OFFSET
1,1
COMMENTS
Let T0 and T1 be the branches of the graph of y = tan x that passes through (0,0,) and (Pi,0), respectively. There exist points P = (p,q) on T0 and U = (u,v) on T1 such that the distance between P and U is the minimal distance, d, between points on T0 and T1.
u = 2.549082584017596768984130292562154758705824602711...
v = -0.67319711901285205370684801604861382107848678888...
p = Pi - u
q = - v
d = 2.375069146040176349439851558778982487866267806508...
EXAMPLE
minimal distance = 2.375069146040176349439851558778982487866267806508...
MATHEMATICA
min = Quiet[FindMinimum[Sqrt[(#[[1]][[1]] - #[[2]][[1]])^2 + (#[[1]][[2]] - \
#[[2]][[2]])^2] &[{{#, Tan[#]} &[x /. FindRoot[# Cos[#]^2 - x Cos[#]^2 + Tan[#] == Tan[x], {x, 0}, WorkingPrecision -> 500]], {#, Tan[#]} &[#]} &[y]], {y, 2}, WorkingPrecision -> 100]]
Show[Plot[{Tan[x], (-# Sec[#]^2) + x Sec[#]^2 + Tan[#], {(# Cos[#]^2) - x Cos[#]^2 + Tan[#]}}, {x, 0, Pi}, AspectRatio -> Automatic, ImageSize -> 300, PlotRange -> {-2, 2}], Graphics[{PointSize[Large], Point[{Pi/2, 0}], Point[{#, Tan[#]}], Point[{Pi - #, -Tan[#]}]}]] &[y /. min[[2]][[1]]]
(* Peter J. C. Moses, May 06 2020 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Jun 15 2020
STATUS
approved