login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of the maximal curvature of the tangent function.
4

%I #8 Jun 01 2022 12:16:31

%S 3,7,0,7,8,2,5,8,3,0,8,1,0,8,8,7,7,4,0,0,4,8,7,1,8,5,1,2,0,2,3,9,3,8,

%T 0,7,6,9,8,4,8,0,7,9,5,9,2,9,5,7,5,6,4,0,5,5,7,3,9,3,3,0,3,0,3,4,1,3,

%U 4,2,7,6,5,8,3,6,5,5,4,7,8,5,1,6,5,1

%N Decimal expansion of the maximal curvature of the tangent function.

%C The maximal curvature of the graph of y = tan x occurs at two points (x,y) on every branch. One of the points has y > 0. Let T be the branch passes through (0,0) and lies in the first quadrant. The maximal curvature, K, occurs at a point (u,v):

%C u = 0.69370020859538391768128598538590650878367123906075077978...

%C v = 0.83157590509648960702865222211498485994964124481665011305...

%C K = 0.37078258308108877400487185120239380769848079592957564055...

%C The osculating circle at (u,v) has

%C center = (x,y) = (-1.627936796879617446318318..., 2.204092389413177659055893...) .

%C radius = 1/K = 2.696998310142587559290309046607440826421048...

%e maximal curvature: K = 0.370782583081088774004871851202393807698480795929575640...

%t centMin = {xMin = ArcCos[Root[3 - 4 #1^2 - 3 #1^4 + 2 #1^6 &, 3]],

%t Root[-2 - 2 #1^2 + 5 #1^4 + 3 #1^6 &, 2]};

%t {centOsc, rOsc} = {{-(1/2) Cot[#1] (1 + Sec[#1]^4) + #1,

%t Cot[#1] - 1/4 Sin[2 #1] + (3 Tan[#1])/2},

%t Sqrt[1/4 Cos[#1]^4 Cot[#1]^2 (1 + Sec[#1]^4)^3]} &[xMin];

%t Show[Plot[{Tan[x], (-# Sec[#]^2) + x Sec[#]^2 +

%t Tan[#], {(# Cos[#]^2) - x Cos[#]^2 + Tan[#]}}, {x, -5, 3},

%t AspectRatio -> Automatic, ImageSize -> 500, PlotRange -> {-2, 4}],

%t Graphics[{PointSize[Medium], Circle[centOsc, rOsc],

%t Point[centOsc], Point[centMin]}]] &[xMin]

%t N[centOsc, 100] (* center of osculating circle *)

%t N[rOsc, 100] (* radius of osculating circle *)

%t N[{ArcCos[Root[3 - 4 #1^2 - 3 #1^4 + 2 #1^6 &, 3]],

%t Root[-2 - 2 #1^2 + 5 #1^4 + 3 #1^6 &,

%t 2]}, 100] (* maximal curvature point *)

%t N[1/rOsc, 100] (* curvature *)

%t (* _Peter J. C. Moses_, May 07 2020 *)

%Y Cf. A332527.

%K nonn,cons

%O 0,1

%A _Clark Kimberling_, Jun 15 2020