login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332457
Numbers k such that sigma(k) == 2 modulo 8 and sigma(sigma(k)) == 6 modulo 8.
3
193, 202, 673, 1153, 1201, 1354, 1601, 1642, 1873, 2017, 2088, 2593, 2682, 2753, 3049, 3112, 3217, 3313, 3328, 3754, 3898, 4041, 4084, 4177, 4273, 4337, 4426, 4561, 5193, 5233, 5386, 5449, 5482, 5849, 6337, 6353, 6826, 6922, 7002, 7057, 7114, 7393, 7402, 7537, 7793, 8081, 8104, 8353, 8564, 8698, 8872, 9049, 9377, 9601
OFFSET
1,1
COMMENTS
That the first part of the condition is necessary for odd perfect numbers, see A332228, that the second part of the condition is necessary, see A019283 and A326181.
MATHEMATICA
Select[Range[10000], With[{c=DivisorSigma[1, #]}, Mod[c, 8]==2&&Mod[DivisorSigma[1, c], 8]==6&]] (* Harvey P. Dale, Nov 23 2024 *)
PROG
(PARI) isA332457(n) = { my(s=sigma(n)); ((2==(s%8)) && (6==(sigma(s)%8))); };
(Magma) [k:k in [1..9700]| DivisorSigma(1, k) mod 8 eq 2 and DivisorSigma(1, DivisorSigma(1, k)) mod 8 eq 6]; // Marius A. Burtea, Feb 15 2020
CROSSREFS
Intersection of A332226 and A332456.
Cf. A332458 (a subsequence of non-primepower odd terms).
Sequence in context: A012856 A114859 A298728 * A088119 A363147 A307250
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 15 2020
STATUS
approved